DOI: https://doi.org/10.32515/2414-3820.2020.50.219-229

Adaptive Mobile Network with Amorphous Topology Node Controller Architecture

Volodymyr Smirnov, Natalia Smirnova

About the Authors

Volodymyr Smirnov, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: swckntu@gmail.com , ORCID ID: 0000-0002-4752-0527

Natalia Smirnova, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID ID: 0000-0002-5683-5766

Abstract

The purpose of the article is to develop an adaptive wireless LAN architecture for the technological processes, robotic devices and other objects control. The article describes the wireless LAN architecture. The concept of a wireless LAN is described. The wireless network is adaptive, self-organizing, and able to operate autonomously. The presented wireless network node controller architecture is the basis for many objects and Smart home control system small systems without using MQTT servers. The nodes of the network nodes interaction is carried out using several transceivers. The use of multiple transceivers made it possible to distribute data traffic, configuration traffic, and control traffic over different channels, which made it possible to carry out information exchange at the same time. The protocol stack is minimized. The functionality of the host and the network object is completely separated. The topology of the mobile network is not deterministic, amorphous and changes when the network objects move in space. In this case, some connections are lost and others arise. The routing tables are constantly updated. The network in accordance with the laid down algorithm, is able to build the necessary topology and organize the necessary connections in order to complete the task with a many objects. The network is capable of building packet retransmission chains for remote network objects. Thus, the wireless network implementation at its low cost allows solving a certain range of tasks. The performer can be either a separate object associated with the operator through a many repeaters. In order to increase the efficiency of the formation of routing tables and minimize the cluster structures in a wireless network, it is advisable to use optimization algorithms based on set theory. The local wireless network is designed to control an Internet of Things objects, robotic objects and control systems for various technological processes.

Keywords

wireless network, architecture, protocol, controller, object, network node, cluster

Full Text:

PDF

References

1. Brian Verenkoff Understanding and Optimizing 802.11n. (July 2011) Buffalo Technology : website. lmi.net. Retrieved from https://www.lmi.net/wp-content/uploads/Optimizing_802.11n.pdf [in English].

2. Wi-Fi Alliance® introduces Wi-Fi 6 (n.d.) : website. wi-fi.org. Retrieved from https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-wi-fi-6 [in English].

3. IEEE 802.15.4-2020 - IEEE Standard for Low-Rate Wireless Networks (2020.05.06). Standards Committee : C/LM - LAN/MAN Standards Committee : website. standards.ieee.org. Retrieved from https://standards.ieee.org/standard/802_15_4-2020.html [in English].

4. IEEE 802.15.2-2003 - IEEE Recommended Practice for Information technology - Local and metropolitan area networks (2003.06.12). Standards Committee : C/LM - LAN/MAN Standards Committee : website. standards.ieee.org. Retrieved from https://standards.ieee.org/standard/802_15_2-2003.html [in English].

5. IEEE 802.15.4-2020 - IEEE Standard for Low-Rate Wireless Networks (2020.05.06). Standards Committee : C/LM - LAN/MAN Standards Committee : website. standards.ieee.org. Retrieved from https://standards.ieee.org/standard/802_15_4-2020.html[in English].

6. P802.15.4z/D06, Jan. 2020 - IEEE Draft Standard for Low-Rate Wireless Networks Amendment: Enhanced High Rate Pulse (HRP) and Low Rate Pulse (LRP) Ultra Wide-Band (UWB) Physical Layers (PHYs) and Associated Ranging Techniques (Jan. 2020) : website. libris.kb.se. Retrieved from http://libris.kb.se/bib/ fr02gv53cvb60ktf [in English].

7. Understanding Z-Wave Networks, Nodes & Devices (28.01.2020). Vesternet Ltd. : website. vesternet.com. Retrieved from https://www.vesternet.com/pages/understanding-z-wave-networks-nodes-devices [in English].

8. Recommendation G.9959 (n.d.) : website. itu.int. Retrieved from http://www.itu.int/rec/T-REC-G.9959-201202-I/en [in English].

9. WiMAX Forum (n.d.) : website. wimaxforum.org. Retrieved from http://wimaxforum.org [in English].

10. IEEE Std 802.16™-2009. IEEE Standard for Local and metropolitan area networks - Part 16: Air Interface for Broadband Wireless Access Systems (29 May 2009) : website. legal.vvv.enseirb-matmeca.fr. Retrieved from https://legal.vvv.enseirb-matmeca.fr/download/amichel/%5BStandard%20LDPC%5D%20802.16-2009.pdf [in English].

11. Smirnov V.V., Smirnova N.V. (2020). Arkhitektura kontrolera vuzla adaptyvnoyi mobilʹnoyi merezhi z amorfnoyu topolohiyeyu [Adaptive mobile network with amorphous topology node controller architecture]. Zbirnyk naukovykh pratsʹ «Tsentralʹnoukrayinsʹkyy naukovyy visnyk. Tekhnichni nauky» - Collected Works ”Central ukrainian scientific bulletin. Technical sciences”. 3(34). 12-21 [in Ukrainian].

12. MQTT: The Standard for IoT Messaging (n.d.) : website. mqtt.org Retrieved from https://mqtt.org/ [in English].

13. Richard Coppen (n.d.). OASIS Message Queuing Telemetry Transport (MQTT) TC : website. oasis-open.org. Retrieved from https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt [in English].

14. HiveMQ GmbH (n.d.). The Messaging and Data Exchange Protocol of the IoT : website. hivemq.com Retrieved from https://www.hivemq.com/mqtt-protocol/ [in English].

15. Eclipse Mosquitto™ (n.d.) An open source MQTT broker : website. mosquitto.org. Retrieved from https://mosquitto.org/ [in English].

Citations

  1. Brian Verenkoff Understanding and Optimizing 802.11n. Buffalo Technology. July 2011. 8 p. URL: https://www.lmi.net/wp-content/uploads/Optimizing_802.11n.pdf (дата обращения: 30.09.2020).
  2. Wi-Fi Alliance® introduces Wi-Fi 6. URL: https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-wi-fi-6 (дата обращения: 30.09.2020).
  3. IEEE 802.15.4-2020 - IEEE Standard for Low-Rate Wireless Networks. Standards Committee : C/LM - LAN/MAN Standards Committee. 2020.05.06. URL: https://standards.ieee.org/standard/802_15_4-2020.html (дата обращения: 30.09.2020).
  4. IEEE 802.15.2-2003 - IEEE Recommended Practice for Information technology - Local and metropolitan area networks. Standards Committee : C/LM - LAN/MAN Standards Committee. 2003.06.12. URL: https://standards.ieee.org/standard/802_15_2-2003.html (дата обращения: 30.09.2020).
  5. IEEE 802.15.4-2020 - IEEE Standard for Low-Rate Wireless Networks. Standards Committee : C/LM - LAN/MAN Standards Committee. 2020.05.06. URL: https://standards.ieee.org/standard/802_15_4-2020.html (дата обращения: 30.09.2020).
  6. P802.15.4z/D06, Jan. 2020 - IEEE Draft Standard for Low-Rate Wireless Networks Amendment: Enhanced High Rate Pulse (HRP) and Low Rate Pulse (LRP) Ultra Wide-Band (UWB) Physical Layers (PHYs) and Associated Ranging Techniques. Jan. 2020. URL: http://libris.kb.se/bib/fr02gv53cvb60ktf (дата обращения: 30.09.2020).
  7. Understanding Z-Wave Networks, Nodes & Devices. Vesternet Ltd. 28.01.2020. URL: https://www.vesternet.com/pages/understanding-z-wave-networks-nodes-devices (дата обращения: 30.09.2020).
  8. Recommendation G.9959. URL: http://www.itu.int/rec/T-REC-G.9959-201202-I/en (дата обращения: 30.09.2020).
  9. WiMAX Forum. URL: http://wimaxforum.org (дата обращения: 30.09.2020).
  10. IEEE Std 802.16™-2009. IEEE Standard for Local and metropolitan area networks - Part 16: Air Interface for Broadband Wireless Access Systems. 29 May 2009. URL: https://legal.vvv.enseirb-matmeca.fr/ download/amichel/%5BStandard%20LDPC%5D%20802.16-2009.pdf (дата обращения: 30.09.2020).
  11. Смірнов В.В., Смірнова Н.В. Архітектура контролера вузла адаптивної мобільної мережі з аморфною топологією. Збірник наукових праць «Центральноукраїнський науковий вісник. Технічні науки». Кропівницький: ЦНТУ, 2020. Вип. 3(34). С. 12-21.
  12. MQTT: The Standard for IoT Messaging. URL: https://mqtt.org/ (дата звернення: 11.12.2020).
  13. Richard Coppen OASIS Message Queuing Telemetry Transport (MQTT) TC. URL: https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt (дата звернення: 11.12.2020).
  14. HiveMQ GmbH The Messaging and Data Exchange Protocol of the IoT. URL: https://www.hivemq.com/mqtt-protocol/ (дата звернення: 12.12.2020).
  15. Eclipse Mosquitto™ An open source MQTT broker. URL: https://mosquitto.org/ (дата звернення: 12.12.2020).
Copyright (c) 2020 Volodymyr Smirnov, Natalia Smirnova