DOI: https://doi.org/10.32515/2414-3820.2021.51.133-140

Analysis of Non-isothermal Processes in Degassers of Resorption Refrigeration Machines

Viktor Oshovskyі

About the Authors

Viktor Oshovskyі, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Pervomaysk Branch of National Shipbuilding University named after admiral Makarov, Pervomaysk, Ukraine, e-mail: oshovskyvikt@ukr.net, ORCID ID: 0000-0002-8065-907Х

Abstract

The aim of the article is to develop a method of calculations and analysis of the non-isothermal process of boiling the solution in countercurrent degassers of resorption refrigeration machines (RCM) at different variants of solution concentrations and vapor sampling temperatures. The concentration and properties of the solution change in the degasser in contrast to the flow of liquid or gas being cooled. Therefore, the results of the analysis predict the ability to choose the parameters of the solution and steam to equalize the temperature pressure between the cooling solution and the cooled stream, which will increase the thermodynamic efficiency of the RHM. According to the presented method, the analysis of the temperature dependence on the received heat for the solution of ammonia in water at boiling in the set temperature range is carried out. According to the constructed graphs, it is proved that this dependence is not proportional. The deviation from proportionality depends on the initial concentration of the solution. The largest deviation from proportionality corresponds to a high concentration of the solution. As the concentration of the solution decreases to the average value, the deviation from proportionality decreases. This is due to the fact that due to the unlimited solubility of ammonia in water and the different heat of vaporization of water and ammonia, the thermal properties of the solution change from a more ammonia-saturated solution to a less saturated one. Thus, to approximate the equidistance of the boiling solution to the stream being cooled, it is necessary to choose the initial concentration of the solution based on the analysis of this method. In addition, whenever possible, the components of the solution for RHM with similar thermal properties should be selected. The equidistance of the temperatures of the boiling solution to the cooled stream will increase the thermodynamic efficiency of the RHM. Thus, the developed technique allows analyzing the relationship between temperature and heat of the solution, the properties of which change during boiling. It is proved by the example of boiling a solution of ammonia in water that this dependence is disproportionate due to the change in the concentration of the solution. The deviation from proportionality is affected by the initial concentration of the solution, which must be chosen so as to approach the equidistance of changes in temperature of the cooling stream of the solution and the cooled stream of liquid or gas. This will increase the efficiency of RСM for their use in energy-saving technologies.

Keywords

degasser, resorption refrigeration machines, concentration range, solution, reduced enthalpy

Full Text:

PDF

References

1. Martynovsky, V.S. (1979). Cycles, schemes and characteristics of thermal transformers . V.M. Brodyansky (Ed.). Moscow: Energy, 288 p. [in Russian].

2. Oshovskyі, V.J. Anastasenko, S.N, Svyateckiy, N.V. & Shostak, O.V. (2019). Enerhetychna efektyvnist' stupinchastykh resorbtsijnykh tsykliv dlia okholodzhennia [Energy efficiency of step resorption cycles for cooling]. Konstrujuvannja, vyrobnyctvo ta ekspluatacija silʹsʹkohospodarsʹkyx mashyn – Design, manufacture and operation of agricultural machinery, Vol. 49 [in Ukrainian].

3. Morozyuk, L.I. & Grudka, B.G. (2016). Enerhetycheskaia effektyvnost' absorbtsyonno-rezorbtsyonnoj kholodyl'noj mashyny v systeme tryheneratsyy maloj enerhetyky [Energy efficiency of absorption-resorption refrigeration machine in the system of low energy trigeneration]. Kholodyl'na tekhnika ta tekhnolohiia – Refrigeration equipment and technology , Vol. 52, issue. 4, 4-10. [in Ukrainian].

4. Vasiliev, L.L., Mishkinis, D.A., Antukh, A.A. & Kulakov, A.G (2004). Resorption heat pump. Thermal Engineering, Vol. 24, P. 1893–1903. [in Belorussian].

5. A.s. 1092336 USSR, MKI F25B 15/12. Absorption-resorption refrigeration unit. [Odessa technologist. in-t cold. prom-ti; V.J. Oshovskyі, А.Г. Dergachev, NG Шмуйлов; declared 11.10.82; publ. 15.05.84, Bull. № 18. 6 p. [in Ukrainian].

6. Ree, H. & Oostendorp, P.A. (1980). Resorption heat pumps. [NATO Advanced Stade Institute : Heat Pumps Fundamentals] Espinho, Sept. [in Portugal].

7. Boshnyakovich, F. (1956.) Technical thermodynamics. Part 2. (Trans). Moscow: Leningrad: Gosenergoizdat, 255p. [in Russian].

8. Kirillin, V.A., Sheindlin, A.E. & Spielrein, E.E. (1980). Termodinamika rastvorov [Thermodynamics of solutions]. Moscow: Energy [in Russian].

9. Blier, B.M., Wurgaft, A.V. (1971). Teoreticheskie osnovy proektirovanija absorbcionnyh termotransformatorov [Theoretical bases of design of absorption thermotransformers.] Moscow: Pishhevaja promyshlennost' [in Russian].

10. Low-potential energy machines and systems: website. Retrieved from http://Sergey- Osetrov.narod.ru/Projects/Heat_Pump/not_traditional_sources_low-potential_energy.htm.

11. Mashiny i sistemy nizkopotencial'noj energetiki : veb-sajt. [Calculation of a two-stage absorption-resorption machine: website]. vseholodilniki.ru. Retrieved from http://vseholodilniki.ru/stati/absorbtsionnye-holodilnye-mashiny/raschet-dvuhstupenchatoy-a

12. Badylkes, I.S. & Danilov, R.L. (1966). Absorbcionnye holodil'nye mashiny [Absorption refrigeration machines]. Moscow: Pishhevaja promyshlennost' [in Russian].

Citations

  1. Мартыновский, В.С. Циклы, схемы и характеристики термотрансформаторов / под ред. В.М. Бродянского. Москва : Энергия, 1979. 288 с.
  2. Енергетична ефективність ступінчастих ресорбційних циклів для охолодження / Ошовський В.Я. та ін. Конструювання, виробництво та експлуатація сільськогосподарських машин: загальнодерж. міжвід. наук.-техн. зб. 2019. Вип. 49. С.168-178.
  3. Морозюк Л. И., Грудка Б. Г. Энергетическая эффективность абсорбционно-резорбционной холодильной машины в системе тригенерации малой энергетики. Холодильна техніка та технологія. 2016. Т. 52, вип. 4. С.4-10.
  4. Resorption heat pump / Vasiliev L.L., Mishkinis D.A., Antukh A.A., Kulakov A.G. Applied. Thermal Engineering. 2004. Vol. 24. P. 1893–1903.
  5. А.с. 1092336 СССР, МКИ F25B 15/12. Абсорбционно-резорбционная холодильная установка / Одесский технолог. ин-т холод. пром-ти; В.Я.Ошовский, А.Г. Дергачёв, Н.Г. Шмуйлов ; заявл. 11.10.82 ; опубл. 15.05.84, Бюл. № 18. 6 с.
  6. Ree H., Oostendorp P.A. Resorption heat pumps, in : NATO Advanced Stade Institute : Heat Pumps Fundamentals, Espinho (Portugal), Sept. 1980.
  7. Бошнякович, Ф. Техническая термодинамика. Ч.2 : пер. с нем. Москва : Ленинград : Госэнергоиздат, 1956. 255с.
  8. Кириллин, В.А., Шейндлин А.Е., Шпильрайн Э.Э. Термодинамика растворов. Москва : Энергия, 1980. 281 с.
  9. Блиер Б.М., Вургафт А.В. Теоретические основы проектирования абсорбционных термотрансформаторов. Москва : Пищевая промышленность, 1971. 203 с.
  10. Машины и системы низкопотенциальной енергетики : веб-сайт. URL: http://Sergey- Osetrov. Projects/Heat_Pump/not_traditional_sources_low-potential_energy.htm. (дата звернення: 14.10.2021)
  11. Расчет двухступенчатой абсорбционно-резорбционной машины : веб-сайт. URL: http://vseholodilniki.ru/stati/absorbtsionnye-holodilnye-mashiny/raschet-dvuhstupenchatoy-a(дата звернення: 15.10.2021)
  12. Бадылькес И.С., Данилов Р.Л. Абсорбционные холодильные машины. Москва : Пищевая промышленность, 1966. 356 с.
Copyright (c) 2021 Viktor Oshovskyі