DOI: https://doi.org/10.32515/2414-3820.2021.51.126-132

Fraktografichniy Analysis of the Ion Nitrided Standards From the Aluminium Pistons of Engines of Agroindustrial Technique

Anatoly Rutkovskіy, Sergiy Markovych, Sergiy Myhajlyta

About the Authors

Anatoly Rutkovskіy, Senior Researcher, PhD in Technics (Candidate of Technics Sciences), National Academy of sciences of Ukraine G.S. Pisarenko institute for problems of strength, Українаe-mail: coating@ipp.kiev.ua

Sergiy Markovych, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: marko60@ukr.net, ORCID ID: 0000-0003-1393-2360

Sergiy Myhajlyta, post-graduate, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: sergejmihajluta2@gmail.com

Abstract

For a more detailed study of kinetics and the mechanism of destruction, the influence of the environment and the load on the resistance of the samples with heat-protecting diffusion ion-accounted layers, a number of additional fractographic studies should be carried out. The presence of this information will increase the strength and reliability of both coatings and coatings in the stage of their design. In the work, a fractographic analysis of ionic nitrogen samples from aluminum pistons of agro-industrial machinery engines using a method of raster electron microscopy on a microscope Micro analyzer "Samssn-4DV" was performed. Determination of the chemical composition of the surface of the samples, as well as various phases, imperfections and inclusions was carried out in this paper using the X-ray spectral microanalysis method (RSMA). It has been established that the mechanism of kinetics of the process of destruction is reduced to the gradual growth of microcracks to a critical size as a result of the rupture of atomic bonds in the vertex of the crack with stresses, which exceeds the conditional limit of the content of the "base-coating" composition. There is an emergence and growth of the same types of cracks. Then the cracks are increasingly revealed and the length and depth increases. The intensive local oxidation of the base in the area of the coating defect leads to a reduction in the cross-section and the growth of acting stress. The consequence of this is an increase in the creep speed, which in turn leads to the development of the initial defect and to the progressive process of destruction in non-additive operating factors. It has been found that the bases defects are destroying the coating. In addition, it has been found that the deformation of the sample is carried out at the expense of the displacement processes. Confirmation of this is the characteristic lines of Chernova-Leuders. Conclusions. It has been shown that the mechanism of destruction process is reduced to the gradual growth of microcracks as a result of the rupture of atomic bonds in the vertex of the crack at strains, which exceeds the conditional line of fluidity of the "base-coating" composition. The presence of areas of the base is established, which as a result of a violation of the strength of the strengthened surface layer interact with the environment and affect the increase of plasticity due to the disclosure of defects. This increases the creep speed, which in turn leads to the progressive process of destruction in the simultaneous operation of operational factors.

Keywords

fractographic analysis, ion-nitrided samples, aluminum pistons, fracture kinetics

Full Text:

PDF

References

1. Ljashenko, B.A. & Rutkovskij, A.V. (2005). O dostoinstvah tehnologii vakuumnogo. Oborudovanie i instrument, 12, 45-47 [in Russian].

2. Liashenko, B.A., Markovych, S.I.& Mykhajliuta, S.S. (2017). Rozrobka tekhnolohichnoho protsesu vakuumnoho azotuvannia porshniv dvyhuniv v pul'suiuchomu puchku plazmy . Zahal'noderzhavnyj mizhvidomchyj naukovo-tekhnichnyj zbirnyk. Konstruiuvannia, vyrobnytstvo ta ekspluatatsiia sil's'kohospodars'kykh mashyn, Vol. 47, ch. 1,158-166 [in Ukrainian].

3. Afonso, A., Ferran, G. & Chi, F. (1991). Development of fiber reinforsed aluminium alloy for diesel piston application . SAE Techn. Pap. Ser. №910632. p.1-9.

4. Aluminium alloy composite material with intermetallic compound finely dispersed in matrix amond reinforcing elements. pat. 5449421 USA, MKI C22C21/00. Opubl. 12.09.95.

5. Murakami Shoji. (1987). Plasma jet spcayed alumina coating on automobile piston . SAE Techn. Pap. Ser., №870158, p. 179-184.

6. Surface hardened aluminium part and method of produsing same. Pat. 5352538 USA, MKI B22P7/04. Оpubl. 04.10.94

7. Krovjakov, K.S. & Radchenko, M.V. (2000). Uprochnenie kol'cevyh kanavok porshnja dizelja zlektronno-luchevoj obrabotkoj . Tehn. mashinostr, 3, 23-25. [in Russian].

8. Vnukov, Ju.N., Markov, A.A., Lavrova, L.V. et al. (1992). Nanesenie iznosostojkih pokritij na bystrorezhushhij instrument . Kyiv: Tehnika [in Russian].

9. Rutkovs'kyj, A.V, Markovych, S.I., Mykhajliuta, S.S. (2020). Doslidzhennia ionnoazotovanykh aliuminiievykh splaviv na izotermichnu ta termotsyklichnu povzuchist'. Pidvyschennia nadijnosti mashyn i obladnannia: zb. materialiv konf. Mizhnarodna naukovo-praktychna konferentsiia (15-17 kvitnia 2020 r) . Kropyvnyts'kyj: TsNTU, Vol. 2. S. 45-50.

10. Jom Larsen-Basse (1998). Surface engineering and the new millennium .Surface Engineering, Vol. 14, 2, p. 81 -83.

11. Gouldstejn Dzh., N'juberi D. & Zchlin I. (1984). Rastrovaja zlektronnaja mikroskopija i rentgenovskij mikroanaliz. (Trans.) Moskow: Mir [in Russian].

Citations

  1. Ляшенко Б.А., Рутковский А.В. О достоинствах технологии вакуумного. Оборудование и инструмент. 2005. №12. С. 45-47.
  2. Ляшенко Б.А., Маркович С.І., Михайлюта С.С. Розробка технологічного процесу вакуумного азотування поршнів двигунів в пульсуючому пучку плазми . Конструювання, виробництво та експлуатація сільськогосподарських машин: загальнодерж.міжвід.наук.-техн. зб. Вип. 47, ч. 1. 2017. С. 158-166.
  3. Afonso A., Ferran G., Chi F. Development of fiber reinforsed aluminium alloy for diesel piston application . SAE Techn. Pap. Ser.1991. №910632. P. 1-9.
  4. Aluminium alloy composite material with intermetallic compound finely dispersed in matrix amond reinforcing elements: Пат. 5449421 США: МКИ C22C21/00. Опубл. 12.09.95.
  5. Murakami Shoji. Plasma jet spcayed alumina coating on automobile piston . SAE Techn. Pap. Ser. 1987. №870158. P. 179-184.
  6. Surface hardened aluminium part and method of produsing same: Пат. 5352538 США: МКИ B22P7/04. Опубл. 04.10.94
  7. Кровяков К.С., Радченко М.В. Упрочнение кольцевых канавок поршня дизеля злектронно-лучевой обработкой . Техн. машиностр. 2000. №3. С. 23-25.
  8. Нанесение износостойких покритий на быстрорежущий инструмент / Внуков Ю.Н. и др. К.: Техника, 1992. 143 с.
  9. Рутковський А.В, Маркович С.І., Михайлюта С.С. Дослідження іонноазотованих алюмінієвих сплавів на ізотермічну та термоциклічну повзучість. Підвищення надійності машин і обладнання: зб. матеріалів конф. Міжнар. наук.-практ. конф., 15-17 квітня 2020 р. Кропивницький: ЦНТУ. 2020. Вип. 2. С. 45-50.
  10. Jom Larsen-Basse. Surface engineering and the new millennium . Surface Engineering. 1998. Vol. 14. №2. P. 81 -83.
  11. Гоулдстейн Дж., Ньюбери Д., Зчлин И. Растровая злектронная микроскопия и рентгеновский микроанализ: пер. с англ. М.: Мир, 1984. 552 с.
Copyright (c) 2021 Anatoly Rutkovskіy, Sergiy Markovych, Sergiy Myhajlyta