DOI: https://doi.org/10.32515/2414-3820.2023.53.264-270

Research on the Dependence of the Microhardness of Modified Surfaces of Titanium Alloys on the Depth of Nitrogen Saturation During Vacuum Ion Plasma Nitriding in the Thermocyclic Mode

Anatoly Rutkovskіy, Sergiy Markovych, Sergiy Magopec, Viktor Markovych

About the Authors

Anatoly Rutkovskіy, Senior Researcher, PhD in Technics (Candidate of Technics Sciences), National Academy of sciences of Ukraine G.S. Pisarenko institute for problems of strength, Kyiv, Ukraine, e-mail: rut2000@ukr.net

Sergiy Markovych, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropivnitskiy, Ukraine, e-mail: marko60@ukr.net, ORCID ID: 0000-0003-1393-2360

Sergiy Magopec, доцент, кандидат технічних наук, Central Ukrainian National Technical University, Kropivnitskiy, Ukraine, e-mail: magserg@ukr.net, ORCID ID: 0000-0002-1522-4555

Viktor Markovych, master's student, Central Ukrainian National Technical University, Kropivnitskiy, Ukraine, e-mail: markovich241082@gmail.com

Abstract

A study of titanium alloys with a strengthened nitrided layer by the method of vacuum ion plasma nitriding in thermocyclic mode was carried out to determine the regularity of the effect of diffusion saturation parameters on microhardness. At the same time, the effect of anomalous mass transfer of nitrogen in the surface of the part being processed was used, by creating a field of thermal stresses in the surface layer due to the cyclic inclusion and exclusion of the glow discharge and cyclic temperature changes. Microhardness studies of strengthened surface layers were carried out on metallographic slides using a PMT-3M microhardness meter, the thickness of the nitride layer was controlled using microstructural analysis using a MIM-10 microscope, and the phase composition of the surface layer was monitored using a DRON-3M device. Vacuum ionic nitriding in the thermocyclic regime of titanium alloys allows changing the physical and mechanical characteristics within wide limits (diffusion layer depth up to 500 μm, microhardness up to 9600 MPa, phase composition of nitrided surfaces, etc.), obtaining surface layers with different phase composition (α , γ' and ε - phases) with and without the nitride zone, depending on the temperature, pressure, composition of the saturating medium, and the size of the temperature cycles. Nitriding in a glow discharge achieves a high hardness of the surface of titanium alloys – up to 10,000 MPa, but at the same time the plasticity of the nitrided layers is sharply reduced and the tensile strength of the material is reduced by 30%. Conclusions. 1. The amount of microhardness depends on the phase composition of the surface. Three phases TiN, Ti2N and Ti(N) are formed on the surface of the VT1-0 alloy after nitriding. The hardness of the surface layer of nitrided titanium depends on the ratio of these phases and is higher, the greater the amount of the TiN phase. The TiN phase has the highest hardness, the Ti2N phase has the lowest hardness. The hardness of the internal nitriding zone (Ti(N)) varies depending on the concentration of nitrogen in it. 2. By changing the parameters of the vacuum ion nitriding process in the pulse mode (temperature, pressure, composition of the saturating medium and nitriding time), it is possible to change the physical and mechanical characteristics (diffusion layer depth up to 300 μm, microhardness up to 9600 MPa, different hardness gradient along the depth , phase composition of nitrided surfaces, etc.), obtain surface layers with different phase composition (α, γ' and ε - phases) with and without a nitride zone, depending on temperature, pressure, composition of the saturating medium, and size temperature cycles, which allows to optimize the properties of the surface layer in specific operating conditions. 3. Increasing the nitriding time of titanium alloys contributes to increasing the thickness of the nitrided layer to 300 microns. Addition of inert helium and argon gases to the saturating medium helps to increase the plasticity and thickness of the nitrided layer.

Keywords

titanium alloys, modified surface, nitriding, microhardness

Full Text:

PDF

References

1. Nazmy, M. & Staubli, M. (1994). Alloy modification of γTiAl for improved mechanical properties. Scr. met. Et mater, 31, 7, 829–833 [in English].

2. Hohaiev, K.O. & Radchenko, O.K. (2001). Deformuvannia tytanovykh splaviv prokatuvanniam [Deformation of titanium alloys by rolling]. Metaloznavstvo ta obrobka metaliv – Metallurgy and metal processing, 4, 25–29 [in Ukrainian]

3. Shalapko, Yu.I., Honcharov, V.V. (1999). Pidvyshchennia antyfryktsiinykh vlastyvostei tytanovoho splavu OT4 pry lazernomu oprominiuvanni poverkhni [Increasing the antifriction properties of the OT4 titanium alloy during laser irradiation of the surface]. Visn. Tekhnol. un-tu Podillia. – Visn. Technol. Podillia University, 6, 177–178 [in Ukrainian]

4. Yue, T.M., Cheung, T.M. & Man, H.C. (2000). The effects of laser surface treatment on the corrosion properties of Ti-6Al-4V alloy in Hank’s solution. J. Mater. Sci. Lett, 19, 3, 205–208 [in English].

5. Gurrappa I. (2001). Effect of aluminizing on the oxidation of the titanium alloy, IMI 834. Oxid. Metals, 56, 1-2, 73–87 [in English].

6. Fedirko, V., Yaskiv, O. & Prytula, A. (2003). Azotuvannia i boruvannia tytanovykh splaviv – perspektyvy kombinovanoho obroblennia [Nitriding and boronizing of titanium alloys – prospects for combined processing]. Mashynoznavstvo – Mechanical science, 4, 23–26. [in Ukrainian]

7. Fedorak, R.M. (1998). Dyfuziine zaliznennia ta tsementatsiia tytanu [Diffusion fertilization and cementation of titanium]. Metaloznavstvo ta obrobka metaliv – Metallurgy and metal processing, 4, 52–55 [in Ukrainian]

8. Rutkovskyi, A. V., Markovych, S.I. & Mykhailiuta, S.S. (2022). Analiz napruzheno-deformovanoho stanu ionnoazotovanykh zrazkiv iz pokryttiam v umovakh izotermichnoi ta termotsyklichnoi povzuchosti [Analysis of the stress-strain state of ion-nitrogenized coated samples under isothermal and thermocyclic creep conditions]. Tsentralnoukrainskyi naukovyi visnyk. Tekhnichni nauky – Central Ukrainian scientific bulletin. Technical sciences, Issue 6(37), 3–9 [in Ukrainian]

9. Rutkovskyi, A.V., Markovych, S.I. & Mykhailiuta, S.S. (2020). Teplostiikist ionnoazotovanykh aliuminiievykh splaviv pry izotermichnomu ta termotsyklichnomu vplyvi [Heat resistance of ion-nitrogenized aluminum alloys under isothermal and thermocyclic exposure]. Tsentralnoukrainskyi naukovyi visnyk. Tekhnichni nauky – Central Ukrainian scientific bulletin. Technical sciences, Issue 3(34), 72–81. [in Ukrainian]

Citations

1. Nazmy M., Staubli M. Alloy modification of γTiAl for improved mechanical properties (Поліпшення механічних властивостей сплаву γTiAl шляхом модифікації). Scr. met. Et mater. 1994. 31, №7. Р. 829–833.

2. Гогаєв К.О., Радченко О.К. Деформування титанових сплавів прокатуванням. Металознавство та обробка металів. 2001. №4. С. 25–29.

3. Шалапко Ю.І., Гончаров В.В. Підвищення антифрикційних властивостей титанового сплаву ОТ4 при лазерному опромінюванні поверхні. Вісн. Технол. ун-ту Поділля. 1999. № 6. С. 177–178.

4. Yue T.M., Cheung T.M., Man H.C. The effects of laser surface treatment on the corrosion properties of Ti-6Al-4V alloy in Hank’s solution. J. Mater. Sci. Lett. 2000. 19, №3. Р. 205–208.

5. Gurrappa I. Effect of aluminizing on the oxidation of the titanium alloy, IMI 834 (Вплив алюмінування на окислення титанового сплаву IMI 834). Oxid. Metals. 2001. 56, №1-2. Р. 73–87.

6. Федірко В., Яськів О., Притула А. Азотування і борування титанових сплавів – перспективи комбінованого оброблення. Машинознавство. 2003. №4. С. 23–26.

7. Федорак Р.М. Дифузійне залізнення та цементація титану. Металознавство та обробка металів. 1998. №4. С. 52–55.

8. Рутковський А. В., Маркович С.І., Михайлюта С.С. Аналіз напружено-деформованого стану іонноазотованих зразків із покриттям в умовах ізотермічної та термоциклічної повзучості. Центральноукраїнський науковий вісник. Технічні науки. 2022. Вип. 6(37), ч. І. С. 3–9

9. Рутковський А.В., Маркович С.І., Михайлюта С.С. Теплостійкість іонноазотованих алюмінієвих сплавів при ізотермічному та термоциклічному впливі. Центральноукраїнський науковий вісник. Технічні науки. 2020. Вип. 3(34). С. 72–81.

Copyright (c) 2023 Anatoly Rutkovskіy, Sergiy Markovych, Sergiy Magopec, Viktor Markovych