DOI: https://doi.org/10.32515/2414-3820.2023.53.51-65

Technical and Economic Justification of Geometric Parameters of Bionic Cultivation Tines Based on Fish Morphology

Hennadii Tesliuk, Elchyn Aliiev, Yuliia Tesliuk

About the Authors

Hennadii Tesliuk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID ID: 0000-0002-7008-2895

Elchyn Aliiev, Senior Researcher, Doctor in Technics (Doctor of Technic Sciences), Dnipro State Agrarian and Economic University, Dnipro, Ukraine, e-mail: aliev@meta.ua, ORCID ID: 0000-0003-4006-8803

Yuliia Tesliuk, doctor of philosophy, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID ID: 0000-0003-4855-7281

Abstract

Therefore, the challenge of aligning the morphology of terrestrial and aquatic fauna with the surface of soil cultivation implements is relevant and requires attention. The research objective is to perform geometric calculations for bionic cultivation tines based on fish morphology and create their three-dimensional models. The analysis of fish morphology and locomotion, along with image processing using developed software in the Visual Studio C++ environment, OpenCV library, and reverse engineering methods, facilitated the approximation of the outer and inner contours of the tail fin of certain fish species. Through analytical investigations, the geometric calculations for the regression equations of convex and concave outer contours of bionic cultivation tines based on the morphology of fish tail fins were conducted, and their three-dimensional models were built using SolidWorks. The analysis of tail fin morphology allowed for the application of rays (radials) to cultivation tines. These rays are aligned along the axial line of the tail fin with displacement toward the outer contour. A general regularity in their arrangement was established and represented as a system of equations. Corresponding models of cultivation tines with guiding rays were constructed using software packages such as Wolfram Cloud and SolidWorks. From a technical and economic perspective, the implementation of the developed bionic cultivation tine shapes can reduce the equipment's drag resistance by 5–10%, leading to a higher economic benefit upon their adoption.

Keywords

cultivator paw, soil, bionics, morphology, fish, tail fin, reverse engineering, design, analysis, technique

Full Text:

PDF

References

1. Tyshchenko, S. S. & Karas, V. V. (2017). Mashyny dlia osnovnoho obrobitku gruntu: teoriia ta proektuvannia poverkhon gruntoobrobnykh robochykh orhaniv: navch. posib [Machines for basic tillage: theory and design of surfaces of tillage working bodies: training. manual]. Dnipro: Dominanta-Print ISBN 978-617-646-234-8 [in Ukrainian].

2. Shevchenko, I. A. (2016). Keruvannia ahrofizychnym stanom gruntovoho seredovyshcha [Management of the agrophysical state of the soil environment]. Kyiv: Vydavnychyi dim «Vinichenko» ISBN 978-966-2622-22-5 [in Ukrainian].

3. Hukov, Ya. S. (1999). Obrobitok gruntu. Tekhnolohiia i tekhnika. Mekhaniko-tekhnolohichne obgruntuvannia enerhozberihaiuchykh zasobiv dlia mekhanizatsii obrobitku gruntu v umovakh Ukrainy [Tillage. Technology and equipment. Mechanical and technological substantiation of energy-saving means for the mechanization of soil cultivation in the conditions of Ukraine]. Kyiv: Nora-Print [in Ukrainian].

4. Tyshchenko, S. S. & Karas, V. V. (2019). Heometrychni osnovy proektuvannia polychnykh robochykh orhaniv: monohrafiia [Geometric bases of design of shelf working bodies: monograph]. Dnipro: TOV «Dominanta-Print». ISBN 978-617-7371-46-4 [in Ukrainian].

5. Kobets, A. S., Volyk, B. A. & Puhach, A. M. (2011). Gruntoobrobni mashyny: teoriia, konstruktsiia, rozrakhunok: monohrafiia [Soil tillage machines: theory, design, calculation: monograph]. Dnipropetrovsk: Svidler A. L. [in Ukrainian].

6. Tyshchenko, S. S., Dubrovin, V. O., Tesliuk, V. V. & Volianskyi, M. S. (2014). Silskohospodarski mashyny. Teoriia i rozrakhunok robochykh orhaniv mashyn dlia poverkhnevoho obrobitku gruntu: navch. posib. [Agricultural machinery. Theory and calculation of working bodies of machines for surface tillage: training. manual]. K.: Kompaniia «Ahrar Media Hrup» . ISBN 978-617-646-234-7 [in Ukrainian].

7. Babytskyi, L. F. (1998). Bionichni napriamy rozrobky gruntoobrobnykh mashyn [Bionic directions of development of tillage machines]. Kyiv: Urozhai [in Ukrainian].

8. Aliiev, E. B. & Labatiuk, Yu. M. (2017). Chyselne modeliuvannia mekhaniko-tekhnolohichnykh protsesiv ahropromyslovoho vyrobnytstva [Numerical modeling of mechanical and technological processes of agro-industrial production]. Suchasni problemy vdoskonalennia tekhnichnykh system i tekhnolohii u tvarynnytstvi: Visnyk Kharkivskoho Natsionalnoho tekhnichnoho universytetu silskoho hospodarstva imeni Petra Vasylenka, 180: 67–71 [in Ukrainian].

9. Ren, L. Q., Tong, J., Li, J. Q. & Chen, B. C. (2001). SW-Soil and Water: Soil adhesion and biomimetics of soil engaging components: a review. Journal Agricultrual Engineering Research, 79(3): 239–263. https://doi.org/10.1006/jaer.2001.0722 [in English].

10. Tong, J., Sun, J. Y., Chen, D. H.b& Zhang, S. J. (2005). Geometrical features and wettability of dung beetles and potential biomimetic engineering applications in til lage implements. Soil and Tillage Research, 80 (1): 1–12. https://doi.org/10.1016/j.still.2003.12.012 [in English].

11. Dai, Z. D., Tong, J. & Ren, L. Q. (2006). Researches and developments of biomimetics in tribology. Chinese Science Bulletin, 51(22): 2681–2689. https://doi.org/10.1007/s11434-006-2184-z [in English].

12. Sagnes, P. & Statzner, B. (2009). Hydrodynamic abilities of riverine fish: a functional link between morphology and velocity use. Aquatic Living Resources, 22: 79-91. https://doi.org/10.1051/ALR/2009008 [in English].

13. Sagong, W., Jeon, W. P. & Choi, H. (2013). Hydrodynamic Characteristics of the Sailfish (Istiophorus platypterus) and Swordfish (Xiphias gladius) in Gliding Postures at Their Cruise Speeds. PLOS ONE 8 (12): e81323. https://doi.org/10.1371/journal.pone.0081323 [in English].

14. Lauder, G. V. & Drucker, E. G. (2004). Morphology and experimental hydrodynamics of fish fin control surfaces. IEEE Journal of Oceanic Engineering, 29 (3): 556–571. https://doi.org/10.1109/JOE.2004.833219 [in English].

15. Song, J., Zhong, Y., Du, R., Yin, L. & Ding, Y. (2021). Tail shapes lead to different propulsive mechanisms in the body/caudal fin undulation of fish. J Mechanical Engineering Science, 235 (2): 351–364. https://doi.org/10.1177/0954406220967687 [in English].

16. Lucas, K. N., Lauder, G. V. & Tytell, E. D. (2020). The fish body functions as an airfoil: surface pressures generate thrust during carangiform locomotion. BioRxiv, 958389. https://doi.org/10.1101/2020.02.20.958389 [in English].

17. Salazar, R., Campos, A., Fuentes, V. & Abdelkefi, A. (2019). A review on the modeling, materials, and actuators of aquatic unmanned vehicles. Ocean Engineering, 172: 257–285. https://doi.org/10.1016/j.oceaneng.2018.11.047 [in English].

18. Xue, G., Bai, F., Guo, L., Ren, P. & Liu, Y. (2023). Research on the effects of complex terrain on the hydrodynamic performance of a deep-sea fishlike exploring and sampling robot moving near the sea bottom. Front. Mar. Sci. 10: 1091523. https://doi.org/10.3389/fmars.2023.1091523 [in English].

19. Fletcher, T., Altringham, J., Peakall, J., Wignall, P. & Dorrel, R. (2014). Hydrodynamics of fossil fishes. Proc. R. Soc. B. 281: 20140703. https://doi.org/10.1098/rspb.2014.0703 [in English].

20. Fish morphology. (2014). The Education Program at the New Jersey Sea Grant Consortium. 22 Magruder Road Fort Hancock, NJ 07732 732‐872‐1300 [in English].

21. Keat-Chuan, Ng C., Aun-Chuan, Ooi P., Wong, W. L. & Khoo, G. (2017). A Review of Fish Taxonomy Conventions and Species Identification Techniques. Journal of Survey in Fisheries Sciences, 4 (1): 54–93.

22. Kushnarev, A. S. & Kochev, V. I. (1989). Mehaniko-tehnologicheskie osnovyi obrabotki pochvyi [Mechanical and technological foundations of soil cultivation]. Kyiv: Urozhay [in Ukrainian].

23. Labatiuk, Yu. M. & Aliiev, E. B. (2015). Matematychne modeliuvannia protsesu vzaiemodii robochoho orhanu hlybokorozpushuvacha z gruntom [Mathematical modeling of the process of interaction between the working body of the soil-corrosion agent and the soil]. Naukovyi visnyk Tavriiskoho derzhavnoho ahrotekhnolohichnoho universytetu, 5 (2): 133–140 [in Ukrainian].

24. Timoshenko, S. P. & Goodier, J. N. (1970). Theory of Elasticity. McGraw-Hill, Third Ed., New York

25. Hutsol, O. P. & Kovbasa, V. P. (2016). Obgruntuvannia parametriv i rezhymiv rukhu gruntoobrobnykh mashyn z dyskovymy robochymy orhanamy [Setting parameters and operating modes of soil-processing machines with disk working bodies]. Kyiv [in Ukrainian].

26. Aliiev, E., Tesliuk, H., Puhach, A., Kobets, O., Zolotovska, O., Boiko, V. (2023). Improving the work process efficiency of a tillage module for pre-sowing tillage. Eastern-European Journal of Enterprise Technologies, 4 (1 (124)), 60–71. https://doi.org/10.15587/1729-4061.2023.284597.

Citations

1. Тищенко С.С., Карась В.В. Машини для основного обробітку ґрунту: теорія та проектування поверхонь ґрунтообробних робочих органів: навч. посіб. Дніпро: Домінанта-Прінт, 2017 204 с.

2. Шевченко І.А. Керування агрофізичним станом ґрунтового середовища. К.: Видавничий дім «Вініченко», 2016. 320 с.

3. Гуков Я.С. Обробіток ґрунту. Технологія і техніка. Механіко-технологічне обґрунтування енергозберігаючих засобів для механізації обробітку ґрунту в умовах України. К.: Нора-Прінт, 1999. 280 с.

4. Тищенко С.С., Карась В.В. Геометричні основи проектування поличних робочих органів: монографія. Дніпро: ТОВ «Домінанта-Прінт», 2019. 356 с.

5. Кобець А.С., Волик Б.А., Пугач А.М. Ґрунтообробні машини: теорія, конструкція, розрахунок: монографія. Дніпропетровськ: Свідлер А. Л., 2011. 140 с.

6. Тищенко С.С., Дубровін В.О., Теслюк В.В., Волянський М.С. Сільськогосподарські машини. Теорія і розрахунок робочих органів машин для поверхневого обробітку ґрунту: навч. посіб. К.: Компанія «Аграр Медіа Груп», 2014. 162 с.

7. Бабицький Л. Ф. Біонічні напрями розробки ґрунтообробних машин. К.: Урожай, 1998. 164 с.

8. Алієв Е.Б., Лабатюк Ю.М. Чисельне моделювання механіко-технологічних процесів агропромислового виробництва. Сучасні проблеми вдосконалення технічних систем і технологій у тваринництві: Вісник Харківського Національного технічного університету сільського господарства імені Петра Василенка. 2017. Вип. 180. С.67–71.

9. Ren L. Q., Tong J., Li J. Q., Chen B. C. (2001). SW-Soil and Water: Soil adhesion and biomimetics of soil engaging components: a review. Journal Agricultrual Engineering Research, 79(3): 239–263. https://doi.org/10.1006/jaer.2001.0722

10. Tong J., Sun J. Y., Chen D. H., Zhang S. J. (2005). Geometrical features and wettability of dung beetles and potential biomimetic engineering applications in til lage implements. Soil and Tillage Research, 80 (1): 1–12. https://doi.org/10.1016/j.still.2003.12.012.

11. Dai Z. D., Tong J., Ren L. Q. (2006). Researches and developments of biomimetics in tribology. Chinese Science Bulletin, 51(22): 2681–2689. https://doi.org/10.1007/s11434-006-2184-z

12. Sagnes P., Statzner B. (2009). Hydrodynamic abilities of riverine fish: a functional link between morphology and velocity use. Aquatic Living Resources, 22: 79-91. https://doi.org/10.1051/ALR/2009008

13. Sagong W., Jeon W. P., Choi H. Hydrodynamic Characteristics of the Sailfish (Istiophorus platypterus) and Swordfish (Xiphias gladius) in Gliding Postures at Their Cruise Speeds. PLOS ONE. 2013. 8 (12): e81323. https://doi.org/10.1371/journal.pone.0081323

14. Lauder G. V., Drucker E. GMorphology and experimental hydrodynamics of fish fin control surfaces. IEEE Journal of Oceanic Engineering . 2004. 29 (3): 556–571. https://doi.org/10.1109/JOE.2004.833219

15. Song J., Zhong Y., Du R., Yin L., Ding Y. Tail shapes lead to different propulsive mechanisms in the body/caudal fin undulation of fish. J Mechanical Engineering Science. 2021. 235 (2): 351–364. https://doi.org/10.1177/0954406220967687

16. Lucas K. N., Lauder G. V., Tytell E. D. The fish body functions as an airfoil: surface pressures generate thrust during carangiform locomotion. BioRxiv. (2020. 958389. https://doi.org/10.1101/ 2020.02.20.958389

17. Salazar R., Campos A., Fuentes V., Abdelkefi A. A review on the modeling, materials, and actuators of aquatic unmanned vehicles. Ocean Engineering. 2019. 172: 257–285. https://doi.org/10.1016/j.oceaneng.2018.11.047

18. Xue G., Bai F., Guo L., Ren P., Liu Y. Research on the effects of complex terrain on the hydrodynamic performance of a deep-sea fishlike exploring and sampling robot moving near the sea bottom. Front. Mar. Sci. 2023. 10: 1091523. https://doi.org/10.3389/fmars.2023.1091523

19. Fletcher T., Altringham J., Peakall J., Wignall P., Dorrel R. Hydrodynamics of fossil fishes. Proc. R. Soc. B. 2014. 281: 20140703. https://doi.org/10.1098/rspb.2014.0703

20. Fish morphology. The Education Program at the New Jersey Sea Grant Consortium. 22 Magruder Road Fort Hancock, 2014. NJ 07732 732‐872‐1300.

21. Keat-Chuan Ng C., Aun-Chuan Ooi P., Wong W. L., Khoo G. A Review of Fish Taxonomy Conventions and Species Identification Techniques. Journal of Survey in Fisheries Sciences. 2017. 4 (1): 54–93.

22. Кушнарев A. С., Кочев В И. Механико-технологические основы обработки. K.: Урожай, 1989. 144 с.

23. Лабатюк Ю. М., Алієв Е. Б. Математичне моделювання процесу взаємодії робочого органу глибокорозпушувача з ґрунтом. Науковий вісник Таврійського державного агротехнологічного університету. 2015. Вип.5 (2). С.133–140.

24. Timoshenko S. P., Goodier J. N. Theory of Elasticity. McGraw-Hill, Third Ed., New York, 1970. 522 p.

25. Гуцол О. П., Ковбаса В. П. Обґрунтування параметрів і режимів руху ґрунтообробних машин з дисковими робочими органами: монографія. Київ, 2016. 145 с.

26. Aliiev, E., Tesliuk, H., Puhach, A., Kobets, O., Zolotovska, O., Boiko, V. Improving the work process efficiency of a tillage module for pre-sowing tillage. Eastern-European Journal of Enterprise Technologies. 2023. 4 (1 (124)), 60–71. https://doi.org/10.15587/1729-4061.2023.284597.

Copyright (c) 2023 Hennadii Tesliuk, Elchyn Aliiev, Yuliia Tesliuk