DOI: https://doi.org/10.32515/2414-3820.2025.55.63-79

Analytical Justification of the Design and Operating Parameters of a Spiral Vibrating Feeder for Dosing Single Sunflower Seeds

Elchyn Aliiev, Olexandr Chernii

About the Authors

Elchyn Aliiev, Doctor of Technic Sciences, Senior Researcher, Professor Department of Engineering of Technical Systems, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID ID: 0000-0003-4006-8803, e-mail: aliev@meta.ua

Olexandr Chernii, PhD student in Industrial Mechanical Engineering, Senior Lecturer of the Department of Engineering of Technical Systems, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID: https://orcid.org/0000-0003-0691-5829, e-mail: sanek20.1984@gmail.com

Abstract

The basis for the high-quality operation of automated systems for phenotyping seeds of agricultural crops is a uniform and dosed supply of research material in order to determine all morphological data of each seed. Vibrating spiral feeders allow to ensure uniform supply of seeds. Sunflower seeds are characterized by a large variability of their size parameters, which significantly complicates ensuring their uniform movement along vibrating surfaces. Therefore, there is a need to optimize the design and technological parameters of vibrating spiral feeders when working with such seeds. The proposed design and technological scheme of a vibrating spiral feeder will allow for single dosing of sunflower seeds during automatic phenotyping. Calculations of the dimensional parameters of the vibrating feeder elements and the modes of its operation have been substantiated. The designed vibrating feeder is a two-mass vibrating machine that will operate in a resonant mode with a tuning coefficient z=1.2. This mode will provide the designed vertical amplitude of oscillation of the feeder bowl A=0.4 mm, with an operating frequency of the unbalanced vibrating drive ω=1460 min-1. The elastic suspension of the vibrating feeder is made of four flat elastic elements inclined to the vertical at an angle ψ= 25°. The calculated elasticity coefficient is с12 = 6447 N/m. Verification calculations for serviceability based on the strength condition confirm the correctness of the design solutions. To improve the quality of the vibrating spiral feeder for dosing single sunflower seeds, there is a need to conduct a factorial experiment to determine the optimal operating parameters. Further research will be conducted using numerical modeling and experiments with a prototype of the vibrating feeder.

Keywords

automatic seed phenotyping, sunflower seeds, spiral vibrating feeder, structural scheme of the vibrating feeder, operating modes, bowl parameters, unbalanced vibration drive, elastic element, operability criteria

Full Text:

PDF

References

1. Pieruschka, R., & Schurr, U. (2019). Plant Phenotyping: Past, Present, and Future. Plant Phenomics, 2019, 1–6. doi: 10.34133/2019/7507131 [in English].

2. Aliev, E. B. (2022). Avtomatychne fenotypuvannia nasinnievoho materialu soniashnyku . Kyiv: Ahrarna nauka. [in Ukrainian].

3. Aliev, E. B., & Vedmedieva, K. V. (2024). Kilʹkisne fenotypuvannia henotypiv soniashnyku . Dnipro : LIRA. [in Ukrainian].

4. Zhang, Y., Tang, Y., He, D., Shi, J., Hao, L., Li, J., Sun, D., Li, H., Zhang, Z., Ye, S., et al.( 2024). Design and Test of Electromagnetic Vibration Type Fine and Small-Amount Seeder for Millet. Agriculture, 14, 1528. https://doi.org/10.3390/ agriculture14091528 [in English].

5. Bandura V., Yaroshenko L., Fialkovska L., Kondratyuk D., Palamarchuk V., & Paladiichuk Y. (2021). Dynamics of sunflower seed movement in the vibrating tray of the infrared dryer and its influence on the drying process. Agraarteadus, 32, 2, 204–213. DOI: 10.15159/jas.21.24 [in English].

6. Lanets, O. S. (2018). Osnovy rozrakhunku ta konstruivannia vibratsiinykh mashyn. Knyha 1. Teoriia ta praktyka stvorennia vibratsiinykh mashyn z harmoniinym rukhom robochoho orhana: Navchalʹnyi posibnyk. Lviv : Vydavnytstvo Lvivsʹkoi politekhniky. [in Ukrainian].

7. Kobets, A.S., Dyrda, V.I., Kozub, Yu.G. (2013), Pidyomno-transportni mashyny [Lifting and conveying machines], Lugansk, Ukraine. [in Ukrainian].

8. Xing, J. & Xu, L. & Shi, L. & Liu, W., & Gao, Ziyao. (2016). Analysis of movement characteristics of single corn seed under circular electromagnetic vibration, 32, 21–28. 10.11975/j.issn.1002-6819.2016.23.003. [in English].

9. Xing, J. & Xu, L. & Liu, X. & Chen, J. & Yuan, Q. & Wang, R. Simulation and test of corn seeds' dispersion and arraying transport in electromagnetic vibration hopper. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2017, 33, 32–39. 10.11975/j.issn.1002-6819.2017.13.005. [in English].

10. Xiong, D., Wu, M., Xie, W., Liu, R., & Luo, H. (2021). Design and Experimental Study of the General Mechanical Pneumatic Combined Seed Metering Device. Appl. Sci. 11, 7223. DOI: 10.3390/app11167223

11. Quan, L.; Xi, D.; Xiao, Y.; Wang, J.; Zhang, M.; Wang, H.; Zhang, T. (2017). Parameters optimization and experiment of oriented alignment system for maize seed group based on electromagnetic vibration. Trans. Chin. Soc. Agric. Eng, 33, 59–66. [in English].

12. Arunyanart, P., & Sudsawat, S. (2023). DEM Simulation for the Predicted Model of Total Rice Seeds Mass in a Vibratory Conveyor. International Journal of Engineering and Technology, 15(4), 161–165. https://doi.org/10.7763/ijet.2023.v15.1240 [in English].

13. Sun, S., Hu, B., Wu, X., Luo, X., & Wang, J. (2024). Research on a Vibrationally Tuned Directional Seed Supply Method Based on ADAMS-EDEM Coupling and the Optimization of System Parameters. Agriculture, 14, 433. https:// doi.org/10.3390/agriculture14030433[in English].

14. Cujbescu, D., Nenciu, F., Persu, C., Găgeanu, I., Gabriel, G., Vlăduț, N.-V., Matache, M., Voicea, I., Pruteanu, A., Bularda, M., Paraschiv, G., & Boruz, S. P. (2023). Evaluation of an Optical Sorter Effectiveness in Separating Maize Seeds Intended for Sowing. Applied Sciences, 13(15), 8892. https://doi.org/10.3390/app13158892 [in English].

15. Wang, S., Yu, Z., Zhang, W., Zhao, D., & Aorigele. (2022). Friction Coefficient Calibration of Sunflower Seeds for Discrete Element Modeling Simulation. Phyton, 91(11), 2559–2582. https://doi.org/10.32604/phyton.2022.021354 [in English].

16. Aliiev, Е. B. (2023). The prospects of quantitative phenotyping of oilseed crops. Agrology, 6(3), 49–59. https://doi.org/10.32819/021109 [in English].

17. Liu, F., Yang, R., Chen, R., Lamine Guindo, M., He, Y., Zhou, J., Lu, X., Chen, M., Yang, Y., & Kong, W. (2024). Digital techniques and trends for seed phenotyping using optical sensors. Journal of Advanced Research, 63, 1–16. https://doi.org/10.1016/j.jare.2023.11.010 [in English].

18. Vrublevskyi, I. Y. (2020). Increasing of elevation angles in vibratory conveyor with electromagnetic drive. Military Technical Collection, 0(22), 48–52. https://doi.org/10.33577/2312-4458.22.2020.48-52 [in English].

19. Azhar, S., & Shah, S. I. A. (2021). Modeling and Analysis of a Vibratory Bowl Feeder. 2021 Seventh International Conference on Aerospace Science and Engineering (ICASE), 1–13. https://doi.org/10.1109/icase54940.2021.9904038 [in English].

20. Cieplok, G. (2024). Influence of vibratory conveyor design parameters on the trough motion and the self-synchronization of inertial vibrators. Open Engineering, 14(1). https://doi.org/10.1515/eng-2022-0434 [in English].

21. Li, R., Zhang, X., Wang, X., Lin, D., Geng, R., & Wang, Y. (2024). Regularities of particle motion on vibrating conveyor. Particulate Science and Technology, 1–15. https://doi.org/10.1080/02726351.2024.2352712 [in English].

22. Frascio, M., Avalle, M., & Monti, M. (2018). Fatigue strength of plastics components made in additive manufacturing: first experimental results. Procedia Structural Integrity, 12, 32–43. https://doi.org/10.1016/j.prostr.2018.11.109 [in English].

23. Domingo-Espin, M., Travieso-Rodriguez, J. A., Jerez-Mesa, R., & Lluma-Fuentes, J. (2018). Fatigue Performance of ABS Specimens Obtained by Fused Filament Fabrication. Materials, 11(12), 2521. https://doi.org/10.3390/ma11122521 [in English].

Citations

1. Pieruschka, R., & Schurr U. Plant Phenotyping: Past, Present, and Future. Plant Phenomics. 2019. Vol. 2019, P. 1–6. DOI: 10.34133/2019/7507131

2. Алієв Е. Б. Автоматичне фенотипування насіннєвого матеріалу соняшнику : монографія. Київ : Аграрна наука, 2022. 104 с.

3. Алієв, Е. Б., Ведмедєва, К. В. Кількісне фенотипування генотипів соняшнику : монографія. Дніпро : ЛІРА, 2024. 204 с.

4. Zhang, Y.; Tang, Y.; He, D.; Shi, J.; Hao, L.; Li, J.; Sun, D.; Li, H.; Zhang, Z.; Ye, S.; et al. Design and Test of Electromagnetic Vibration Type Fine and Small-Amount Seeder for Millet. Agriculture. 2024. 14. 1528. https://doi.org/10.3390/ agriculture14091528

5. Bandura V., Yaroshenko L., Fialkovska L., Kondratyuk D., Palamarchuk V., Paladiichuk Y. Dynamics of sunflower seed movement in the vibrating tray of the infrared dryer and its influence on the drying process. Agraarteadus. 2021. Vol. 32, Iss. 2, P. 204-213. DOI: 10.15159/jas.21.24.

6. Ланець, О.С. Основи розрахунку та конструювання вібраційних машин. Книга 1. Теорія та практика створення вібраційних машин з гармонійним рухом робочого органа: навч. посіб. Львів : Видавництво Львівської політехніки, 2018. 612 с.

7. Підйомно-транспортні машини : підручник / Кобець А.С. та ін.; за ред. проф. А.С. Кобця та В.І. Дирди. Луганськ : ДЗ «ЛНУ імені Тараса Шевченка», 2013. 218 с.

8. Xing, J. & Xu, L. & Shi, L. & Liu, W. & Gao, Ziyao. Analysis of movement characteristics of single corn seed under circular electromagnetic vibration. 2016. Vol. 32. P.21-28. 10.11975/j.issn.1002-6819.2016.23.003.

9. Xing, J. & Xu, L. & Liu, X. & Chen, J. & Yuan, Q. & Wang, R... Simulation and test of corn seeds' dispersion and arraying transport in electromagnetic vibration hopper. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering. 2017. Vol. 33. P.32–39. 10.11975/j.issn.1002-6819.2017.13.005.

10. Xiong D., Wu M., Xie W., Liu R., Luo H. Design and Experimental Study of the General Mechanical Pneumatic Combined Seed Metering Device. Appl. Sci. 2021. Vol. 11. 7223. DOI: 10.3390/app11167223

11. Quan, L.; Xi, D.; Xiao, Y.; Wang, J.; Zhang, M.; Wang, H.; Zhang, T. Parameters optimization and experiment of oriented alignment system for maize seed group based on electromagnetic vibration. Trans. Chin. Soc. Agric. Eng. 2017. Vol. 33. P.59–66.

12. Arunyanart, P., & Sudsawat, S. DEM Simulation for the Predicted Model of Total Rice Seeds Mass in a Vibratory Conveyor. International Journal of Engineering and Technology. 2023. Vol. 15(4), P.161–165. https://doi.org/10.7763/ijet.2023.v15.1240

13. Sun, S.; Hu, B.; Wu, X.; Luo, X.; Wang, J. Research on a Vibrationally Tuned Directional Seed Supply Method Based on ADAMS-EDEM Coupling and the Optimization of System Parameters. Agriculture. 2024. Vol.14. 433. https:// doi.org/10.3390/agriculture14030433

14. Cujbescu, D., Nenciu, F., Persu, C., Găgeanu, I., Gabriel, G., Vlăduț, N.-V., Matache, M., Voicea, I., Pruteanu, A., Bularda, M., Paraschiv, G., & Boruz, S. P.. Evaluation of an Optical Sorter Effectiveness in Separating Maize Seeds Intended for Sowing. Applied Sciences. 2023. Vol. 13(15). 8892. https://doi.org/10.3390/app13158892

15. Wang, S., Yu, Z., Zhang, W., Zhao, D., & Aorigele. Friction Coefficient Calibration of Sunflower Seeds for Discrete Element Modeling Simulation. Phyton. 2022. Vol. 91(11). P.2559–2582. https://doi.org/10.32604/phyton.2022.021354

16. Aliiev, Е. B.. The prospects of quantitative phenotyping of oilseed crops. Agrology. 2023. Vol. 6(3). P.49–59. https://doi.org/10.32819/021109

17. Liu, F., Yang, R., Chen, R., Lamine Guindo, M., He, Y., Zhou, J., Lu, X., Chen, M., Yang, Y., & Kong, W.. Digital techniques and trends for seed phenotyping using optical sensors. Journal of Advanced Research, 2024. Vol.63. P.1–16. https://doi.org/10.1016/j.jare.2023.11.010

18. Vrublevskyi, I. Y.. Increasing of elevation angles in vibratory conveyor with electromagnetic drive. Military Technical Collection, 2020. Vol. 0(22). P.48–52. https://doi.org/10.33577/2312-4458.22.2020.48-52

19. Azhar, S., & Shah, S. I. A.. Modeling and Analysis of a Vibratory Bowl Feeder. 2021 Seventh International Conference on Aerospace Science and Engineering (ICASE), 2021. P.1–13. https://doi.org/10.1109/icase54940.2021.9904038

20. Cieplok, G.. Influence of vibratory conveyor design parameters on the trough motion and the self-synchronization of inertial vibrators. Open Engineering, 2024. Vol. 14(1). https://doi.org/10.1515/eng-2022-0434

21. Li, R., Zhang, X., Wang, X., Lin, D., Geng, R., & Wang, Y.. Regularities of particle motion on vibrating conveyor. Particulate Science and Technology. 2024. P. 1–15. https://doi.org/10.1080/02726351.2024.2352712

22. Frascio, M., Avalle, M., & Monti, M.. Fatigue strength of plastics components made in additive manufacturing: first experimental results. Procedia Structural Integrity. 2018. Vol. 12. P.32–43. https://doi.org/10.1016/j.prostr.2018.11.109

23. Domingo-Espin, M., Travieso-Rodriguez, J. A., Jerez-Mesa, R., & Lluma-Fuentes, J.. Fatigue Performance of ABS Specimens Obtained by Fused Filament Fabrication. Materials. 2018. Vol. 11(12). P. 2521. https://doi.org/10.3390/ma11122521

Copyright (c) 2025 Elchyn Aliiev, Olexandr Chernii