DOI: https://doi.org/10.32515/2414-3820.2025.55.140-148

Metrological and Technological Assurance of Surface-Layer Parameter Conformity in the Restoration of Machine Parts

Oleksandr Gorbenko, Hryhorii Lapenko, Taras Lapenko

About the Authors

Oleksandr Gorbenko, Associate Professor, Candidate of Technical Sciences. Associate Professor of the Department of Agroengineering and Automobile Transport, Poltava State Agrarian University, Poltava, Ukraine, ORCID: https://orcid.org/0000-0003-2473-0801 , e-mail: oleksandr.gorbenko@pdau.edu.ua

Hryhorii Lapenko, Associate Professor, Candidate of Technical Sciences. Professor of the Department of Agroengineering and Automobile Transport, Poltava State Agrarian University, Poltava, Ukraine, ORCID: https://orcid.org/0000-0003-1435-5307, e-mail: grygorii.lapenko@pdau.edu.ua

Olena Luzan, Associate Professor, Candidate of Technical Sciences. Professor of the Department of Agroengineering and Automobile Transport, Poltava State Agrarian University, Poltava, Ukraine, ORCID: https://orcid.org/0000-0001-8055-6698, e-mail: taras.lapenko@pdau.edu.ua

Abstract

The article addresses ensuring the conformity of surface-layer parameters of internal combustion engine (ICE) piston pins restored to nominal size by vibratory expanding followed by mechanical finishing. The aim is to develop a metrologically traceable methodology for assessing and controlling surface integrity with due regard to the interchangeability and tribological performance of the pin–bushing pair. An integrated approach is proposed: the set of indicators is identified (surface roughness, out-of-roundness, microhardness, compressive residual stresses, friction coefficient, and wear rate), and a complete traceability chain to SI standards is established. Four technological routes are compared: P0 – vibratory expanding; P1 – finishing machining; P2 – machining with a standard cutting fluid (coolant–lubricant); P3 – machining with a special cutting fluid containing a biocidal additive. Using DOE plans, factor–parameter models are built and corresponding process windows are determined. A multicriteria Surface Integrity Index (SII) is proposed, based on desirability functions and a weighted geometric mean, with explicit allowance for measurement uncertainty; recommended decision thresholds are provided. The results confirm the metrological soundness of comparing the routes, support the justified establishment of acceptance criteria, and enable tuning of restoration processes to ensure interchangeability, reduce wear, and increase the predicted service life of the assembly.

Keywords

Restoration, surface roughness, wear, surface integrity, residual stresses, microhardness

Full Text:

PDF

References

1. Dudnikov, A., Ivankova, O., Gorbenko, O., & Kelemesh, A. (2021). Effect of vibration treatment on increasing the durability of tillage equipment working bodies. Eastern-European Journal of Enterprise Technologies, 2, 104–108. https://doi.org/10.15587/1729-4061.2021.228606

2. Lapenko, H. O., Horbenko, O. V., Lapenko, T. H., & Kovtun, V. A. (2020). Optymizatsiia parametriv shlifuvannia almaznymy kruhamy, vyhotovlenymy z almaznykh poroshkiv iz nikelevym pokryttiam [Optimization of grinding parameters using diamond wheels made from nickel-coated diamond powders]. Visnyk Poltavskoi Derzhavnoi Ahrarnoi Akademii, (4), 267–272. https://doi.org/10.31210/visnyk2020.04.34

3. Xiang, Q., He, Y., & Hou, T.-H. (2016). An exploration of surface integrity remanufacturing for aeroengine components. Frontiers of Engineering Management, 3(2), 107–114. https://doi.org/10.15302/J-FEM-2016025

4. Ge, C., Meng, W., Feng, H., Cui, M., Dong, L., Miao, T., Huo, Y., Wu, J., & Han, J. (2023). Microstructure and mechanical properties of gradient nanostructured Q345 steel prepared by ultrasonic severe surface rolling. Scanning, 2023, Article 7705844. https://doi.org/10.1155/2023/7705844

5. Mohapatra, S., & Oh, M.-S. (2025). Evaluating the tribological properties and residual stress of TiCrN thin films deposited by cathodic-arc physical vapor deposition technique. Applied Sciences, 15(5), Article 2466. https://doi.org/10.3390/app15052466

6. Liu, G., Huang, C., Zhao, B., Wang, W., & Sun, S. (2021). Effect of machined surface integrity on fatigue performance of metal workpiece: A review. Chinese Journal of Mechanical Engineering, 34, Article 118. https://doi.org/10.1186/s10033-021-00631-x

7. Xu, N., Jiang, X., Shen, X., & Peng, H. (2023). Improving the surface integrity and tribological behavior of a high-temperature friction surface via the synergy of laser cladding and ultrasonic burnishing. Lubricants, 11, 379. https://doi.org/10.3390/lubricants11090379

8. Summer, F., Bergmann, P., & Grün, F. (2023). On the wear behaviour of bush drive chains: Part II – Performance screening of pin materials and lubricant effects. Lubricants, 11(4), 157. https://doi.org/10.3390/lubricants11040157

9. Pawlus, P., Reizer, R., Wieczorowski, M., et al. (2021). Functional importance of surface texture parameters. Materials, 14, 3536. https://doi.org/10.3390/ma14185326

10. Sedlaček, M., Gregorčič, P., & Podgornik, B. (2016). Use of the roughness parameters Ssk and Sku to control friction: A method for designing surface texturing. Tribology Transactions, 60(2). https://doi.org/10.1080/10402004.2016.1159358

11. Jawahir, I. S., Brinksmeier, E., M’Saoubi, R., Aspinwall, D. K., Outeiro, J. C., Meyer, D., Umbrello, D., & Jayal, A. D. (2011). Surface integrity in material removal processes: Recent advances. CIRP Annals – Manufacturing Technology, 60(2), 603–626. https://doi.org/10.1016/j.cirp.2011.05.002

12. M’Saoubi, R., Outeiro, J. C., Chandrasekaran, H., Dillon, O. W., Jr., & Jawahir, I. S. (2008). A review of surface integrity in machining and its impact on functional performance and life of machined products. International Journal of Sustainable Manufacturing, 1(1–2), 203–236. https://doi.org/10.1504/IJSM.2008.019234

13. Kowalski, S., Cieślikowski, B., Barta, D., Dižo, J., & Dittrich, A. (2023). Analysis of the operational wear of the combustion engine piston pin. Lubricants, 11(3), 100. https://doi.org/10.3390/lubricants11030100

14. Kompozytsiia zmashchuvalno-okholodzhuiuchoi ridyny dlia obrobky metaliv. (2008). Patent Ukrainy No. 36000, MPK (2006) C10M 173/02; zaiavka No. u200806102; zaiavl. 12.05.2008; opubl. 10.10.2008, Biul. No. 19). Ukrainskyi instytut intelektualnoi vlasnosti (Ukrpatent). 6 s.

Citations

1. Dudnikov A., Ivankova O., Gorbenko O., Kelemesh A. Effect of Vibration Treatment on Increasing the Durability of Tillage Equipment Working Bodies. Eastern-European Journal of Enterprise Technologies. 2021. Vol. 2. P. 104–108. DOI: 10.15587/1729-4061.2021.228606 .

2. Лапенко Г. О., Горбенко О. В., Лапенко Т. Г., Ковтун В. А. Оптимізація параметрів шліфування алмазними кругами, виготовленими з алмазних порошків із нікелевим покриттям. Вісник ПДАА. 2020. № 4. С. 267–272. DOI: https://doi.org/10.31210/visnyk2020.04.34

3. Qiao Xiang, Yong He, Ting‑hong Hou. An Exploration of Surface Integrity Remanufacturing for Aeroengine Components. Frontiers of Engineering Management. 2016. Vol. 3, No. 2. P. 107‑114. DOI: 10.15302/J‑FEM‑2016025.

4. Ge C., Meng W., Feng H., Cui M., Dong L., Miao T., Huo Y., Wu J., Han J. Microstructure and Mechanical Properties of Gradient Nanostructured Q345 Steel Prepared by Ultrasonic Severe Surface Rolling. Scanning. 2023. Vol. 2023: 7705844. DOI: 10.1155/2023/7705844.

5. Mohapatra S., Oh M.-S. Evaluating the Tribological Properties and Residual Stress of TiCrN Thin Films Deposited by Cathodic‑Arc Physical Vapor Deposition Technique. Applied Sciences. 2025. Vol. 15, No. 5. Article 2466. DOI: 10.3390/app15052466.

6. Liu G., Huang C., Zhao B., Wang W., Sun S. Effect of Machined Surface Integrity on Fatigue Performance of Metal Workpiece: A Review. Chinese Journal of Mechanical Engineering. 2021. Vol. 34: Article 118. DOI: 10.1186/s10033‑021‑00631‑X.

7. Xu, N.; Jiang, X.; Shen, X.; Peng, H. Improving the Surface Integrity and Tribological Behavior of a High-Temperature Friction Surface via the Synergy of Laser Cladding and Ultrasonic Burnishing. Lubricants. 2023, Vol. 11, 379. https://doi.org/10.3390/lubricants11090379

8. Summer F., Bergmann P., Grün F. On the Wear Behaviour of Bush Drive Chains: Part II – Performance Screening of Pin Materials and Lubricant Effects. Lubricants. 2023. Vol. 11, No. 4. Article 157. DOI: 10.3390/lubricants11040157.

9. Pawlus P., Reizer R., Wieczorowski M., et al. Functional Importance of Surface Texture Parameters. Materials. 2021. Vol. 14, Article 3536. DOI: 10.3390/ma14185326.

10. Sedlaček M., Gregorčič P., Podgornik B. Use of the roughness parameters Ssk and Sku to control friction – a method for designing surface texturing. Tribology Transactions. 2016. Vol. 60, No. 2. P. (Article) DOI: 10.1080/10402004.2016.1159358

11. Jawahir I. S., Brinksmeier E., M’Saoubi R., Aspinwall D. K., Outeiro J. C., Meyer D., Umbrello D., Jayal A. D. Surface integrity in material removal processes: recent advances. CIRP Annals. Manufacturing Technology. 2011. Vol. 60, No. 2. P. 603–626. DOI:10.1016/j.cirp.2011.05.002.

12. M’Saoubi R., Outeiro J. C., Chandrasekaran H., Dillon O. W. Jr., Jawahir I. S. A review of surface integrity in machining and its impact on functional performance and life of machined products. International Journal of Sustainable Manufacturing. 2008. Vol. 1, Nos. 1–2. P. 203–236. DOI:10.1504/IJSM.2008.019234.

13. Kowalski S., Cieślikowski B., Barta D., Dižo J., Dittrich A. Analysis of the Operational Wear of the Combustion Engine Piston Pin. Lubricants. 2023. Vol. 11, No. 3. Article 100. DOI:10.3390/lubricants11030100.

14. Композиція змащувально-охолоджуючої рідини для обробки металів : пат. 36000 Україна : МПК (2006) С10М 173/02. № u200806102; заявл. 12.05.2008. опубл. 10.10.2008, Бюл. №19. 6 с.

Copyright (c) 2025 Oleksandr Gorbenko, Hryhorii Lapenko, Taras Lapenko