DOI: https://doi.org/10.32515/2414-3820.2025.55.148-162
Physico-mathematical Model of Dense Random Packing of Oilseed Seeds
About the Authors
Oleg Onopriienko, Ph.D in Mathematics and Statistics, Associate Professor, Associate Professor of the Department of Department of Higher Mathematics, Physics and General Engineering Disciplines, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID: https://orcid.org/0000-0002-3127-4616, e-mail: onopriienko.o.d@dsau.dp.ua
Elchyn Aliiev, Doctor of Technic Sciences, Senior Researcher, Professor Department of Engineering of Technical Systems, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID ID: 0000-0003-4006-8803, e-mail: aliev@meta.ua
Volodymyr Hovorukha, Doctor of Physics and Mathematics; Professor; Head of the Department of Higher Mathematics, Physics and General Engineering Disciplines, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID: https://orcid.org/0000-0002-0936-9272, e-mail: hovorukha.v.b@dsau.dp.ua
Abstract
This study proposes a numerical model of dense random packing of mustard seeds within a cylindrical volume. The aim of the research is to simulate the process of spherical particle sedimentation under gravity using the Discrete Element Method (DEM). The model accounts for interparticle interactions, including contact forces, friction, rolling resistance, and restitution, which ensures a realistic representation of the physical behavior of granular media. To describe contact forces between seeds, a nonlinear Hertz–Mindlin model is applied, allowing for accurate consideration of the elastic properties of particle materials and their interactions under load. The simulation is conducted under conditions that resemble real industrial processes of pouring and compacting granular food materials.
The numerical experiment models the gradual filling of mustard seeds into a confined vertical container. Upon completion of sedimentation and system stabilization, the packing density and main geometric parameters of the formed structure are recorded. The results show that the maximum average packing density reaches values in the range of 0.63–0.64, which aligns well with classical theoretical estimates for random dense sphere packing.
The obtained results are practically significant for applications in the agro-industrial and food processing sectors, particularly in the design of hoppers, storage tanks, and processing units for granular agricultural products. The developed model can serve as a basis for further research into compaction, mixing, and classification processes in granular systems.
Additionally, the simulation outcomes may be integrated into multiscale models involving continuum mechanics to develop more accurate digital twins of agricultural technologies. Furthermore, the presented modeling methodology enables the evaluation of the influence of container geometry, material properties, and external loading on the microstructure and packing density of granular media, making it promising for advanced engineering applications.
Keywords
bulk materials, seeds, oilseed crops, mustard, random packing, physico-mechanical properties, modeling, discrete element method, compression, elasticity, Hertz–Mindlin model
Full Text:
PDF
References
1. Gao, F., Liu, Y., & Zhang, J. (2018). Numerical study of spherical particle packing in silos. Powder Science and Technology, 36(9), 891–902.
2. Horabik, J., & Molenda, M. (2016). Parameters and contact models for DEM simulations of agricultural granular materials: A review. Biosystems Engineering, 147, 206–225.
3. Huang, W., Duan, R., & Zhang, M. (2020). Discrete element modeling for cereal seeds: Theory and practice. International Agrophysics, 34(3), 201–218.
4. Koshy, T. B., Borzooei, S., & Molenda, M. (2019). DEM simulation of seed metering: A review. Agricultural Engineering International: CIGR Journal, 21(3), 78–91.
5. Li, H., Wang, X., & Ma, X. (2021). Measurement and analysis of physical and mechanical properties of rapeseed. Processes, 9, 1394. https://doi.org/10.3390/pr9071394
6. Ma, Z., Jia, M., Liu, J., & Xu, W. (2024). Microstructural characterization of DEM-based random packings of cubic particles: Influence of particle shape. Journal of Chemical Physics, 160, 164901. https://doi.org/10.1063/5.0172545
7. Makwana, K., Patel, A., & Singh, S. (2021). Discrete element method in modelling grain flow: Recent advances. Powder Technology, 393, 354–366.
8. Maraveas, C., Tsigkas, N., & Bartzanas, T. (2025). Agricultural processes simulation using discrete element method: A review. Computers and Electronics in Agriculture, 237, 110733. https://doi.org/10.1016/j.compag.2025.110733
9. Modi, V., Singh, S., & Pal, K. K. (2019). DEM modelling of grain–machine interaction. Transactions of the ASABE, 62(4), 999–1008.
10. Nyagah, E. K., Jusoh, M., & Bashir, A. (2020). Simulation of granular seed flow: DEM approach. Powder Technology, 377, 255–263.
11. Pournale, R., & Koh, T. J. (2019). Advances in DEM modeling of agricultural materials. Powder Technology, 349, 1–15.
12. Ropelewska, E., Jankowski, K. J., Zapotoczny, P., & Bogucka, B. (2018). Thermophysical and chemical properties of seeds of traditional and double low cultivars of white mustard. Zemdirbyste-Agriculture, 105(3), 257–264. https://doi.org/10.13080/z-a.2018.105.033
13. Sahu, S., Kumar, S., & Prasad, S. (2022). Modelling granular agro-materials by discrete element method. Journal of Biosystems Engineering, 47(2), 125–137.
14. Singh, A. P., Angelidakis, V., Pöschel, T., & Roy, S. (2024). Shear zones in granular mixtures of hard and soft particles with high and low friction. Soft Matter, 20(1), 192–204. https://doi.org/10.1039/d3sm01159a
15. Singh, V., Moses, S. C., Noor Alam, R., & Dsouza, P. (2023). Investigation of physical and frictional properties of mustard seed varieties to design inclined plate metering mechanism. International Journal of Environment and Climate Change, 13(11), 1392–1399.
16. Tian, Y., Zeng, Z., & Xing, Y. (2024). A review of discrete element method applications in soil–plant interactions: Challenges and opportunities. Agriculture, 14(9), 1486. https://doi.org/10.3390/agriculture14091486
17. Xie, Q., Liu, G., & Wang, L. (2018). DEM simulation of seed sowing processes. Journal of Agricultural Mechanization Research, 40, 140–148.
18. Zhang, T., Wang, F., & Tao, Y. (2022). Characterization of granular seed beds using DEM. Computational Materials Science, 210, 111232.
19. Zhao, H., Huang, Y., Liu, Z., Liu, W., & Zheng, Z. (2021). Applications of discrete element method in the research of agricultural machinery: A review. Agriculture, 11(5), 425. https://doi.org/10.3390/agriculture11050425
20. Zhao, Z., Wu, M., & Jiang, X. (2024). A review of contact models’ properties for discrete element simulation in agricultural engineering. Agriculture, 14(2), 238. https://doi.org/10.3390/agriculture14020238
Citations
1. Zhao Z., Wu M., Jiang X. A review of contact models’ properties for discrete element simulation in agricultural engineering. Agriculture. 2024. Vol. 14. № 2. Art. 238. DOI: 10.3390/agriculture14020238.
2. Ma Z., Jia M., Liu J., Xu W. Microstructural characterization of DEM-based random packings of cubic particles: Influence of particle shape. Journal of Chemical Physics. 2024. Vol. 160. Art. 164901. DOI: 10.1063/5.0172545.
3. Singh A.P., Angelidakis V., Pöschel T., Roy S. Shear zones in granular mixtures of hard and soft particles with high and low friction. Soft Matter. 2024. Vol. 20. № 1. P. 192–204. DOI: 10.1039/d3sm01159a.
4. Singh V., Moses S.C., Noor Alam R., Dsouza P. Investigation of physical and frictional properties of mustard seed varieties to design inclined plate metering mechanism. International Journal of Environment and Climate Change. 2023. Vol. 13. № 11. P. 1392–1399.
5. Li H., Wang X., Ma X. Measurement and analysis of physical and mechanical properties of rapeseed. Processes. 2021. Vol. 9. Art. 1394. DOI: 10.3390/pr9071394.
6. Ropelewska E., Jankowski K.J., Zapotoczny P., Bogucka B. Thermophysical and chemical properties of seeds of traditional and double low cultivars of white mustard. Zemdirbyste-Agriculture. 2018. Vol. 105. № 3. P. 257–264. DOI: 10.13080/z-a.2018.105.033.
7. Horabik J., Molenda M. Parameters and contact models for DEM simulations of agricultural granular materials: A review. Biosystems Engineering. 2016. Vol. 147. P. 206–225.
8. Zhao H., Huang Y., Liu Z., Liu W., Zheng Z. Applications of discrete element method in the research of agricultural machinery: a review. Agriculture. 2021. Vol. 11. № 5. Art. 425. DOI: 10.3390/agriculture11050425.
9. Maraveas C., Tsigkas N., Bartzanas T. Agricultural processes simulation using discrete element method: a review. Computers and Electronics in Agriculture. 2025. Vol. 237. Art. 110733. DOI: 10.1016/j.compag.2025.110733.
10. Tian Y., Zeng Z., Xing Y. A review of discrete element method applications in soil–plant interactions: challenges and opportunities. Agriculture. 2024. Vol. 14. № 9. Art. 1486. DOI: 10.3390/agriculture14091486.
11. Pournale R., Koh T.J. Advances in DEM modeling of agricultural materials. Powder Technology. 2019. Vol. 349. P. 1–15.
12. Makwana K., Patel A., Singh S. Discrete element method in modelling grain flow: recent advances. Powder Technology. 2021. Vol. 393. P. 354–366.
13. Nyagah E.K., Jusoh M., Bashir A. Simulation of granular seed flow: DEM approach. Powder Technology. 2020. Vol. 377. P. 255–263.
14. Koshy T.B., Borzooei S., Molenda M. DEM simulation of seed metering: a review. Agricultural Engineering International: CIGR Journal. 2019. Vol. 21. № 3. P. 78–91.
15. Sahu S., Kumar S., Prasad S. Modelling granular agro-materials by discrete element method. Journal of Biosystems Engineering. 2022. Vol. 47. № 2. P. 125–137.
16. Modi V., Singh S., Pal K.K. DEM modelling of grain–machine interaction. Transactions of the ASABE. 2019. Vol. 62. № 4. P. 999–1008.
17. Huang W., Duan R., Zhang M. Discrete element modeling for cereal seeds: theory and practice. International Agrophysics. 2020. Vol. 34. № 3. P. 201–218.
18. Xie Q., Liu G., Wang L. DEM simulation of seed sowing processes. Journal of Agricultural Mechanization Research. 2018. Vol. 40. P. 140–148.
19. Zhang T., Wang F., Tao Y. Characterization of granular seed beds using DEM. Computational Materials Science. 2022. Vol. 210. Art. 111232.
20. Gao F., Liu Y., Zhang J. Numerical study of spherical particle packing in silos. Powder Science and Technology. 2018. Vol. 36. № 9. P. 891–902.
Copyright (c) 2025 Oleg Onopriienko, Elchyn Aliiev, Volodymyr Hovorukha
Physico-mathematical Model of Dense Random Packing of Oilseed Seeds
About the Authors
Oleg Onopriienko, Ph.D in Mathematics and Statistics, Associate Professor, Associate Professor of the Department of Department of Higher Mathematics, Physics and General Engineering Disciplines, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID: https://orcid.org/0000-0002-3127-4616, e-mail: onopriienko.o.d@dsau.dp.ua
Elchyn Aliiev, Doctor of Technic Sciences, Senior Researcher, Professor Department of Engineering of Technical Systems, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID ID: 0000-0003-4006-8803, e-mail: aliev@meta.ua
Volodymyr Hovorukha, Doctor of Physics and Mathematics; Professor; Head of the Department of Higher Mathematics, Physics and General Engineering Disciplines, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID: https://orcid.org/0000-0002-0936-9272, e-mail: hovorukha.v.b@dsau.dp.ua
Abstract
Keywords
Full Text:
PDFReferences
1. Gao, F., Liu, Y., & Zhang, J. (2018). Numerical study of spherical particle packing in silos. Powder Science and Technology, 36(9), 891–902.
2. Horabik, J., & Molenda, M. (2016). Parameters and contact models for DEM simulations of agricultural granular materials: A review. Biosystems Engineering, 147, 206–225.
3. Huang, W., Duan, R., & Zhang, M. (2020). Discrete element modeling for cereal seeds: Theory and practice. International Agrophysics, 34(3), 201–218.
4. Koshy, T. B., Borzooei, S., & Molenda, M. (2019). DEM simulation of seed metering: A review. Agricultural Engineering International: CIGR Journal, 21(3), 78–91.
5. Li, H., Wang, X., & Ma, X. (2021). Measurement and analysis of physical and mechanical properties of rapeseed. Processes, 9, 1394. https://doi.org/10.3390/pr9071394
6. Ma, Z., Jia, M., Liu, J., & Xu, W. (2024). Microstructural characterization of DEM-based random packings of cubic particles: Influence of particle shape. Journal of Chemical Physics, 160, 164901. https://doi.org/10.1063/5.0172545
7. Makwana, K., Patel, A., & Singh, S. (2021). Discrete element method in modelling grain flow: Recent advances. Powder Technology, 393, 354–366.
8. Maraveas, C., Tsigkas, N., & Bartzanas, T. (2025). Agricultural processes simulation using discrete element method: A review. Computers and Electronics in Agriculture, 237, 110733. https://doi.org/10.1016/j.compag.2025.110733
9. Modi, V., Singh, S., & Pal, K. K. (2019). DEM modelling of grain–machine interaction. Transactions of the ASABE, 62(4), 999–1008.
10. Nyagah, E. K., Jusoh, M., & Bashir, A. (2020). Simulation of granular seed flow: DEM approach. Powder Technology, 377, 255–263.
11. Pournale, R., & Koh, T. J. (2019). Advances in DEM modeling of agricultural materials. Powder Technology, 349, 1–15.
12. Ropelewska, E., Jankowski, K. J., Zapotoczny, P., & Bogucka, B. (2018). Thermophysical and chemical properties of seeds of traditional and double low cultivars of white mustard. Zemdirbyste-Agriculture, 105(3), 257–264. https://doi.org/10.13080/z-a.2018.105.033
13. Sahu, S., Kumar, S., & Prasad, S. (2022). Modelling granular agro-materials by discrete element method. Journal of Biosystems Engineering, 47(2), 125–137.
14. Singh, A. P., Angelidakis, V., Pöschel, T., & Roy, S. (2024). Shear zones in granular mixtures of hard and soft particles with high and low friction. Soft Matter, 20(1), 192–204. https://doi.org/10.1039/d3sm01159a
15. Singh, V., Moses, S. C., Noor Alam, R., & Dsouza, P. (2023). Investigation of physical and frictional properties of mustard seed varieties to design inclined plate metering mechanism. International Journal of Environment and Climate Change, 13(11), 1392–1399.
16. Tian, Y., Zeng, Z., & Xing, Y. (2024). A review of discrete element method applications in soil–plant interactions: Challenges and opportunities. Agriculture, 14(9), 1486. https://doi.org/10.3390/agriculture14091486
17. Xie, Q., Liu, G., & Wang, L. (2018). DEM simulation of seed sowing processes. Journal of Agricultural Mechanization Research, 40, 140–148.
18. Zhang, T., Wang, F., & Tao, Y. (2022). Characterization of granular seed beds using DEM. Computational Materials Science, 210, 111232.
19. Zhao, H., Huang, Y., Liu, Z., Liu, W., & Zheng, Z. (2021). Applications of discrete element method in the research of agricultural machinery: A review. Agriculture, 11(5), 425. https://doi.org/10.3390/agriculture11050425
20. Zhao, Z., Wu, M., & Jiang, X. (2024). A review of contact models’ properties for discrete element simulation in agricultural engineering. Agriculture, 14(2), 238. https://doi.org/10.3390/agriculture14020238
Citations
1. Zhao Z., Wu M., Jiang X. A review of contact models’ properties for discrete element simulation in agricultural engineering. Agriculture. 2024. Vol. 14. № 2. Art. 238. DOI: 10.3390/agriculture14020238.
2. Ma Z., Jia M., Liu J., Xu W. Microstructural characterization of DEM-based random packings of cubic particles: Influence of particle shape. Journal of Chemical Physics. 2024. Vol. 160. Art. 164901. DOI: 10.1063/5.0172545.
3. Singh A.P., Angelidakis V., Pöschel T., Roy S. Shear zones in granular mixtures of hard and soft particles with high and low friction. Soft Matter. 2024. Vol. 20. № 1. P. 192–204. DOI: 10.1039/d3sm01159a.
4. Singh V., Moses S.C., Noor Alam R., Dsouza P. Investigation of physical and frictional properties of mustard seed varieties to design inclined plate metering mechanism. International Journal of Environment and Climate Change. 2023. Vol. 13. № 11. P. 1392–1399.
5. Li H., Wang X., Ma X. Measurement and analysis of physical and mechanical properties of rapeseed. Processes. 2021. Vol. 9. Art. 1394. DOI: 10.3390/pr9071394.
6. Ropelewska E., Jankowski K.J., Zapotoczny P., Bogucka B. Thermophysical and chemical properties of seeds of traditional and double low cultivars of white mustard. Zemdirbyste-Agriculture. 2018. Vol. 105. № 3. P. 257–264. DOI: 10.13080/z-a.2018.105.033.
7. Horabik J., Molenda M. Parameters and contact models for DEM simulations of agricultural granular materials: A review. Biosystems Engineering. 2016. Vol. 147. P. 206–225.
8. Zhao H., Huang Y., Liu Z., Liu W., Zheng Z. Applications of discrete element method in the research of agricultural machinery: a review. Agriculture. 2021. Vol. 11. № 5. Art. 425. DOI: 10.3390/agriculture11050425.
9. Maraveas C., Tsigkas N., Bartzanas T. Agricultural processes simulation using discrete element method: a review. Computers and Electronics in Agriculture. 2025. Vol. 237. Art. 110733. DOI: 10.1016/j.compag.2025.110733.
10. Tian Y., Zeng Z., Xing Y. A review of discrete element method applications in soil–plant interactions: challenges and opportunities. Agriculture. 2024. Vol. 14. № 9. Art. 1486. DOI: 10.3390/agriculture14091486.
11. Pournale R., Koh T.J. Advances in DEM modeling of agricultural materials. Powder Technology. 2019. Vol. 349. P. 1–15.
12. Makwana K., Patel A., Singh S. Discrete element method in modelling grain flow: recent advances. Powder Technology. 2021. Vol. 393. P. 354–366.
13. Nyagah E.K., Jusoh M., Bashir A. Simulation of granular seed flow: DEM approach. Powder Technology. 2020. Vol. 377. P. 255–263.
14. Koshy T.B., Borzooei S., Molenda M. DEM simulation of seed metering: a review. Agricultural Engineering International: CIGR Journal. 2019. Vol. 21. № 3. P. 78–91.
15. Sahu S., Kumar S., Prasad S. Modelling granular agro-materials by discrete element method. Journal of Biosystems Engineering. 2022. Vol. 47. № 2. P. 125–137.
16. Modi V., Singh S., Pal K.K. DEM modelling of grain–machine interaction. Transactions of the ASABE. 2019. Vol. 62. № 4. P. 999–1008.
17. Huang W., Duan R., Zhang M. Discrete element modeling for cereal seeds: theory and practice. International Agrophysics. 2020. Vol. 34. № 3. P. 201–218.
18. Xie Q., Liu G., Wang L. DEM simulation of seed sowing processes. Journal of Agricultural Mechanization Research. 2018. Vol. 40. P. 140–148.
19. Zhang T., Wang F., Tao Y. Characterization of granular seed beds using DEM. Computational Materials Science. 2022. Vol. 210. Art. 111232.
20. Gao F., Liu Y., Zhang J. Numerical study of spherical particle packing in silos. Powder Science and Technology. 2018. Vol. 36. № 9. P. 891–902.