DOI: https://doi.org/10.32515/2414-3820.2025.55.134-139
Expanding the Scope of appLication of Super Hard Cutters in Mechanical Assembly Shops of Machine-building Plants and Service Enterprise Sections
About the Authors
Dmytro Artemenko, Associate Professor, PhD of technical sciences (Candidate of Technical Sciences), Associate Professor of Agricultural Engineering Department, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, https://orcid.org/0000-0002-6633-0470, e-mail: artemenkodyu@kntu.kr.ua
Petro Luzan, Associate Professor, PhD of technical sciences (Candidate of Technical Sciences), Associate Professor of Agricultural Engineering Department, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-1819-999X, e-mail: luzanpg@gmail.com
Olena Luzan, PhD of technical sciences (Candidate of Technical Sciences), Assistant of Agricultural Engineering Department, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-7678-0635, e-mail: luzanolena@gmail.com
Viktor Kovbasa, Professor, Doctor of Technical Sciences, Professor of the Department of Mechanical and Electrical Engineering, Poltava State Agrarian University, Poltava, Ukraine, ORCID: https://orcid.org/0000-0003-4574-5826, e-mail: kovbasa.volodymyr@pdau.edu.ua
Abstract
The study investigates the application of burnishing as a cost-effective finishing method for machine parts. Aimed at replacing grinding in manufacturing and repair conditions. A special focus is placed on the reuse of worn cutting tools made of hexanit-R (cubic boron nitride), whose cores can serve as effective burnishing tools, reducing costs while maintaining quality.
Experimental research was carried out on cylindrical specimens of 40X steel (30 mm diameter). A special tool holder was designed to provide elastic too-workpiece contact. Burnishing parameters included forces from 300 to 700 N, edge radii from 2 to 10 mm, feed of 0.05 mm/rev, three passes, spindle speed 630 rpm. Surface roughness was measured with a profilometer, while hardness was evaluated using the HRC scale.
Elastic contact ensured process stability and prevented surface defects observed under rigid contact. Results demonstrated a reduction of initial roughness from Ra = 2.5 µm to Ra = 0.16 µm, depending on the tool edge radius, along with an increase in surface hardness by 2-4 HRC. The best balance between roughness reduction and hardening was achieved with an edge radius of 4-6 mm and three passes.
The study proposes the innovative reuse of worn hexanit-R cutting inserts as burnishing tools. This method prolongs the lifespan of costly superhard materials and creates a new opportunity for incorporating too recycling into surface engineering. This approach extends the service life of expensive superhard materials and opens a new pathway for integration tool recycling into surface engineering.
The results offer a cost-efficient option for processing hardened steels and cast irons without grinding. Implementing this method in repair workshop with limited machine tools offers improved accuracy, enhanced durability of parts, reduced maintenance costs.
Burnishing using repurposed hexanit-R tools is a practical, economical, sustainable finishing solution. It ensures high surface quality and strengthening of machine parts, making it especially valuable for service enterprises. Further work will focus on modeling and optimizing burnishing parameters for steel of different grades.
Keywords
burnishing, hexanit-R, finishing, roughness, hardness, steel, superhard materials, repair technologies
Full Text:
PDF
References
1. Popov, S. V. (2025). Study of the accuracy of cylinder machining with a carbide tool. Naukovyi visnyk, 15(1), 105–113 [in Ukrainian]. https://doi.org/10.32782/2220-8674-2025-25-1-12
2. Frolov, Ye. A., Kravchenko, S. I., Popov, S. V., & Hnitko, S. M. (2019). Technological support of product quality in mechanical engineering. Poltava: NUPP [in Ukrainian].
3. Riazantsev, A. O., Rebrova, S. V., & Kolomiiets, D. A. (2020). Application of diamond burnishing technology for thin-walled parts. Rozvytok Promyslovosti ta Suspilstva, (104), 173–182 [in Ukrainian].
4. Vyshnepolskyi, E. V., & Pavlenko, D. V. (2020). Diamond burnishing of parts made of non-compact titanium aluminide alloys. Aviatsiino-Kosmichna Tekhnika i Tekhnolohiia, 3(163), 43–52 [in Ukrainian]. https://doi.org/10.32620/aktt.2020.3.05
5. Hamzaieva, H. R. (2022). Vplyv podachi ta kilkosti prokhodiv pry almaznomu vyhladzhuvanni na shorstkist [Effect of feed and number of passes in diamond burnishing on roughness]. Problemy Obchysliuvalnoi Mekhaniky i Mitsnosti Konstruktsii, (34), 16–21 [in Ukrainian]. https://doi.org/10.15421/4222102
6. Felhő, C., & Varga, G. (2022). CAD and FEM modelling of theoretical roughness in diamond burnishing. International Journal of Precision Engineering and Manufacturing, 23, 1233–1246. https://doi.org/10.1007/s12541-022-00622-5
7. Felhő, C., & Varga, G. (2022). 2D FEM investigation of residual stress in diamond burnishing. Journal of Manufacturing and Materials Processing, 6, 123. https://doi.org/10.3390/jmmp6050123
8. Rachmat, H., Rahim, E. A., Mohid, Z., Mahalil, K., Feisal Kasah, A. A. K., & Nadzri, A. (2019). Effect of burnishing tool radius and coolant technique on burnishing performance. Journal of Physics: Conference Series, 1150, 012047. https://doi.org/10.1088/1742-6596/1150/1/012047
9. Mahalil, K., Abd Rahim, E., & Mohid, Z. (2019). Performance evaluation of sustainable coolant techniques on burnishing process. IOP Conference Series: Materials Science and Engineering, 494, 012001. https://doi.org/10.1088/1757-899X/494/1/012001
10. Shirsat, U., Ahuja, B., & Dhuttargaon, M. (2016). Effect of burnishing parameters on surface finish. Journal of the Institution of Engineers (India): Series C. https://doi.org/10.1007/s40032-016-0320-3
Citations
1. Попов С.В. Дослідження точності оброблення циліндра різцем із твердого сплаву. Науковий вісник. Запоріжжя : ТДАТУ, 2025. Вип. 15; Т. 1. С. 105–113. URL: https://doi.org/10.32782/2220-8674-2025-25-1-12 (дата звернення 30.09.2025).
2. Фролов Є. А., Кравченко С. І., Попов С. В., Гнітько С. М. Технологічне забезпечення якості продукції машинобудування: монографія. Полтава : НУПП, 2019. 204 с.
3. Рязанцев А.О., Реброва С.В., Коломієць Д.А. Застосування технології алмазного вигладжування для тонкостінних деталей. Розвиток промисловості та суспільства. 2020. Вип. 104. С. 173–182.
4. Вишнепольський Е.В., Павленко Д.В. Алмазне вигладжування деталей з некомпактних сплавів на основі алюмінідів титану. Авіаційно-космічна техніка і технологія. 2020. №3 (163). С. 43–52. https://doi.org/10.32620/aktt.2020.3.05 (дата звернення 30.09.2025).
5. Гамзаєва Г.Р. Вплив подачі та кількості проходів при алмазному вигладжуванні на шорсткість. Проблеми обчислювальної механіки і міцності конструкцій. 2022. Вип. 34. С. 16–21. https://doi.org/10.15421/4222102 (дата звернення 30.09.2025).
6. Felhő С., Varga G. CAD and FEM modelling of theoretical roughness in diamond burnishing. International Journal of Precision Engineering and Manufacturing. 2022. Vol. 23. P. 1233–1246. https://doi.org/10.1007/s12541-022-00622-5 (дата звернення 30.09.2025).
7. Felhő C., Varga G. 2D FEM investigation of residual stress in diamond burnishing. Journal of Manufacturing and Materials Processing. 2022. Vol. 6, 123. https://doi.org/ 10.3390/jmmp6050123 (дата звернення 30.09.2025).
8. Rachmat H., Rahim E.A., Mohid Z., Mahalil K., Feisal Kasah A.A.K., Nadzri A. Effect of burnishing tool radius and coolant technique on burnishing performance. Journal of Physics: Conference Series. 2019. Vol. 1150. 012047. https://doi.org/10.1088/1742-6596/1150/1/012047 (дата звернення 30.09.2025).
9. Mahalil K., Abd Rahim E., Mohid Z. Performance evaluation of sustainable coolant techniques on burnishing process. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 494. P. 012001. https://doi.org/10.1088/1757-899X/494/1/012001 (дата звернення 30.09.2025).
10. Shirsat U., Ahuja B., Dhuttargaon M. Effect of burnishing parameters on surface finish. Journal of the Institution of Engineers (India): Series C. 2016. https://doi.org/10.1007/s40032-016-0320-3 (дата звернення 30.09.2025).
Copyright (c) 2025 Stanislav Popov, Oleksandr Kanivets
Expanding the Scope of appLication of Super Hard Cutters in Mechanical Assembly Shops of Machine-building Plants and Service Enterprise Sections
About the Authors
Dmytro Artemenko, Associate Professor, PhD of technical sciences (Candidate of Technical Sciences), Associate Professor of Agricultural Engineering Department, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, https://orcid.org/0000-0002-6633-0470, e-mail: artemenkodyu@kntu.kr.ua
Petro Luzan, Associate Professor, PhD of technical sciences (Candidate of Technical Sciences), Associate Professor of Agricultural Engineering Department, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-1819-999X, e-mail: luzanpg@gmail.com
Olena Luzan, PhD of technical sciences (Candidate of Technical Sciences), Assistant of Agricultural Engineering Department, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-7678-0635, e-mail: luzanolena@gmail.com
Viktor Kovbasa, Professor, Doctor of Technical Sciences, Professor of the Department of Mechanical and Electrical Engineering, Poltava State Agrarian University, Poltava, Ukraine, ORCID: https://orcid.org/0000-0003-4574-5826, e-mail: kovbasa.volodymyr@pdau.edu.ua
Abstract
Keywords
Full Text:
PDFReferences
1. Popov, S. V. (2025). Study of the accuracy of cylinder machining with a carbide tool. Naukovyi visnyk, 15(1), 105–113 [in Ukrainian]. https://doi.org/10.32782/2220-8674-2025-25-1-12
2. Frolov, Ye. A., Kravchenko, S. I., Popov, S. V., & Hnitko, S. M. (2019). Technological support of product quality in mechanical engineering. Poltava: NUPP [in Ukrainian].
3. Riazantsev, A. O., Rebrova, S. V., & Kolomiiets, D. A. (2020). Application of diamond burnishing technology for thin-walled parts. Rozvytok Promyslovosti ta Suspilstva, (104), 173–182 [in Ukrainian].
4. Vyshnepolskyi, E. V., & Pavlenko, D. V. (2020). Diamond burnishing of parts made of non-compact titanium aluminide alloys. Aviatsiino-Kosmichna Tekhnika i Tekhnolohiia, 3(163), 43–52 [in Ukrainian]. https://doi.org/10.32620/aktt.2020.3.05
5. Hamzaieva, H. R. (2022). Vplyv podachi ta kilkosti prokhodiv pry almaznomu vyhladzhuvanni na shorstkist [Effect of feed and number of passes in diamond burnishing on roughness]. Problemy Obchysliuvalnoi Mekhaniky i Mitsnosti Konstruktsii, (34), 16–21 [in Ukrainian]. https://doi.org/10.15421/4222102
6. Felhő, C., & Varga, G. (2022). CAD and FEM modelling of theoretical roughness in diamond burnishing. International Journal of Precision Engineering and Manufacturing, 23, 1233–1246. https://doi.org/10.1007/s12541-022-00622-5
7. Felhő, C., & Varga, G. (2022). 2D FEM investigation of residual stress in diamond burnishing. Journal of Manufacturing and Materials Processing, 6, 123. https://doi.org/10.3390/jmmp6050123
8. Rachmat, H., Rahim, E. A., Mohid, Z., Mahalil, K., Feisal Kasah, A. A. K., & Nadzri, A. (2019). Effect of burnishing tool radius and coolant technique on burnishing performance. Journal of Physics: Conference Series, 1150, 012047. https://doi.org/10.1088/1742-6596/1150/1/012047
9. Mahalil, K., Abd Rahim, E., & Mohid, Z. (2019). Performance evaluation of sustainable coolant techniques on burnishing process. IOP Conference Series: Materials Science and Engineering, 494, 012001. https://doi.org/10.1088/1757-899X/494/1/012001
10. Shirsat, U., Ahuja, B., & Dhuttargaon, M. (2016). Effect of burnishing parameters on surface finish. Journal of the Institution of Engineers (India): Series C. https://doi.org/10.1007/s40032-016-0320-3
Citations
1. Попов С.В. Дослідження точності оброблення циліндра різцем із твердого сплаву. Науковий вісник. Запоріжжя : ТДАТУ, 2025. Вип. 15; Т. 1. С. 105–113. URL: https://doi.org/10.32782/2220-8674-2025-25-1-12 (дата звернення 30.09.2025).
2. Фролов Є. А., Кравченко С. І., Попов С. В., Гнітько С. М. Технологічне забезпечення якості продукції машинобудування: монографія. Полтава : НУПП, 2019. 204 с.
3. Рязанцев А.О., Реброва С.В., Коломієць Д.А. Застосування технології алмазного вигладжування для тонкостінних деталей. Розвиток промисловості та суспільства. 2020. Вип. 104. С. 173–182.
4. Вишнепольський Е.В., Павленко Д.В. Алмазне вигладжування деталей з некомпактних сплавів на основі алюмінідів титану. Авіаційно-космічна техніка і технологія. 2020. №3 (163). С. 43–52. https://doi.org/10.32620/aktt.2020.3.05 (дата звернення 30.09.2025).
5. Гамзаєва Г.Р. Вплив подачі та кількості проходів при алмазному вигладжуванні на шорсткість. Проблеми обчислювальної механіки і міцності конструкцій. 2022. Вип. 34. С. 16–21. https://doi.org/10.15421/4222102 (дата звернення 30.09.2025).
6. Felhő С., Varga G. CAD and FEM modelling of theoretical roughness in diamond burnishing. International Journal of Precision Engineering and Manufacturing. 2022. Vol. 23. P. 1233–1246. https://doi.org/10.1007/s12541-022-00622-5 (дата звернення 30.09.2025).
7. Felhő C., Varga G. 2D FEM investigation of residual stress in diamond burnishing. Journal of Manufacturing and Materials Processing. 2022. Vol. 6, 123. https://doi.org/ 10.3390/jmmp6050123 (дата звернення 30.09.2025).
8. Rachmat H., Rahim E.A., Mohid Z., Mahalil K., Feisal Kasah A.A.K., Nadzri A. Effect of burnishing tool radius and coolant technique on burnishing performance. Journal of Physics: Conference Series. 2019. Vol. 1150. 012047. https://doi.org/10.1088/1742-6596/1150/1/012047 (дата звернення 30.09.2025).
9. Mahalil K., Abd Rahim E., Mohid Z. Performance evaluation of sustainable coolant techniques on burnishing process. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 494. P. 012001. https://doi.org/10.1088/1757-899X/494/1/012001 (дата звернення 30.09.2025).
10. Shirsat U., Ahuja B., Dhuttargaon M. Effect of burnishing parameters on surface finish. Journal of the Institution of Engineers (India): Series C. 2016. https://doi.org/10.1007/s40032-016-0320-3 (дата звернення 30.09.2025).