DOI: https://doi.org/10.32515/2414-3820.2025.55.214-224
Theoretical Calculation and Study of the Stress State of an Anti-friction Coating Applied to the Working Surface of a Camshaft Cam
About the Authors
Ihor Shepelenko, Professor, Doctor of Technical Sciences, Professor of Department of Exploitation and Repairing Machines, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0003-1251-1687, e-mail: kntucpfzk@gmail.com
Artem Krasota, PhD student in Industrial Engineering, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0009-0007-7700-9176, e-mail: kras.kras.kras.365@gmail.com
Vasiliy Gutsul, Associate Professor, Candidate of Technical Sciences, associate professor of the Department of Higher Mathematics and Physics, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https:// orcid.org/0000-0003-4155-5355, e-mail: vigutsul@ukr.net
Mykhailo Krasota, Associate Professor, PhD (Candidate of Technical Sciences), Associate Professor of Department of Exploitation and Repairing Machines, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, https://orcid.org/0000-0001-8791-3264, e-mail: krasotamv@ukr.net
Abstract
The presented studies are devoted to establishing the main patterns of stress state changes in the contact zone of the camshaft cam, the working surface of which is coated with an anti-friction coating. A method for studying the stress state of the cam working surface is proposed, which consists in selecting a calculation scheme that takes into account the operating conditions of the “cam-follower” connection, obtaining analytical dependencies for determining stresses in the contact zone, and their graphical interpretation to establish the main patterns.
For the analytical study of the patterns of stress in the contact zone, the method of elasticity theory was used to solve contact problems. In this case, it was assumed that the cam and follower contact each other on a rectangular area. This made it possible to establish the main dependencies for determining the stress state in the studied zone. The calculation of circumferential and axial stresses made it possible to construct diagrams of their distribution for a cam with an anti-friction coating, as well as without an anti-friction coating. To analyze the causes of stress concentration peaks at the boundaries of the contact areas, calculations were made of the stress state of the cam surface, which is subjected only to friction stresses in the contact zone.
Calculations of the stress state of the working surface of the camshaft of a KamAZ truck engine showed that compressive stresses arise in the circumferential direction, with their maximum reaching the central zone of the contact area. Tensile stresses are created at the edges of the contact area. It has been established that contact friction forces contribute to the appearance of stress peaks, the magnitude of which is related to the design features of the cam-follower friction pair of the camshaft. The calculations confirm the feasibility of using anti-friction coatings on the surfaces of camshaft cams. Applying such FANT coatings reduces stresses by 47% in the circumferential direction and 34% in the longitudinal direction, thereby reducing cam wear.
Keywords
antifriction coating, stress state, final antifriction non-abrasive treatment, cam, camshaft, wear resistance, contact zone
Full Text:
PDF
References
1. Solovih, Ye.K. (2012). Trends in the development of surface hardening technologies in mechanical engineering. Kirovohrad : KOD [in Ukrainian].
2. Shepelenko, I.V. (2021). Technological factors influence on the antifriction coatings quality. Проблеми трибології (Problems of Tribology), 26, №2/100. 50–57. https://doi.org/10.31891/2079-1372-2021-100-2-50-57 [in English].
3. Restoration of parts using combined technologies based on plastic deformation : Collective monograph. Kharkiv. Disa Plus, 2025. 673 s. https://repository.kpi.kharkov.ua/handle/KhPI-Press/94008 [in Ukrainian].
4. Yang, H., Jung, WC., Lee, C. et al. (2021). Effect of Surface Smoothness on the Structure of Scale and Formation of Surface Cracks in TiAl Alloys under Heat Treatment. Met Sci Heat Treat 63, 414–418. https://doi.org/10.1007/s11041-021-00704-7 [in English].
5. Shepelenko, I., Nemyrovskyi, Y., Stepchyn, Y., Mahopets, S., Melnyk, O. (2024). Creation of a Combined Technology for Processing Parts Based on the Application of an Antifriction Coating and Deforming Broaching. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes V. InterPartner 2023. Lecture Notes in Mechanical Engineering. Springer, Cham, pp. 209–218. https://doi.org/10.1007/978-3-031-42778-7_19 [in English].
6. Sun, T., Jin, K., Wang, T. et al. (2023). Synergistic effect of graphene oxide and cathodic protection to enhance the long-term protective performance of organic coatings. J Mater Sci 58, 10853–10869. https://doi.org/10.1007/s10853-023-08701-2 [in English].
7. Shepelenko I.V. (2021). Naukovi osnovi tehnologiyi nanesennya antifrikcijnih pokrittiv z vikoristannyam plastichnogo deformuvannya [Scientific basis of the technology of applying antifriction coatings using plastic deformation]. Avtoreferat disertaciyi doktora tehnichnih nauk, 43 s. [in Ukrainian].
8. Multifunctional electric arc coatings. Monograph. Lviv. ProstirM, 2018. 335 s. [in Ukrainian].
9. Frolov, Ye.A., Kravchenko, S.I., Popov, S.V., Hnitko, S.M. (2019). Tekhnolohichne zabezpechennia yakosti produktsii mashynobuduvannia [Technological support for the quality of engineering products]. Poltava, 201 s. [in Ukrainian].
10. Electrospark anti-friction coatings on aluminum alloys for engine building : мonograph. Kropyvnytskyi. CNTU. 2024. 156 s. [in Ukrainian].
11. Lakkannavar, V., Yogesha, K.B., Prasad, C.D. et al. (2024). A Review on Tribological and Corrosion Behaviour of Thermal Spray Coatings. J. Inst. Eng. India Ser. D . https://doi.org/10.1007/s40033-024-00636-5 [in English].
12. Savulyak V.I. (2002). Synthesis of wear-resistant composite materials and surface layers from exothermic components. Monograph. Vinnytsia. UNIVERSUM-Vinnytsia. 161 s. [in Ukrainian].
13. Chernovol M.I., Shepelenko I.V. (2012). Methods of forming anti-friction coatings on metal friction coatings. Collection of scientific works of Kirovograd National Technical University, Kirovograd, 2012. Issue 25 (1). pp. 3–8. [in Ukrainian].
14. Shepelenko, I., Nemyrovskyi, Y., Tsekhanov, Y., Mahopets, S., Bevz, O. (2020). Peculiarities of interaction of micro-roughnesses of contacting surfaces at FANT. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D. (eds.) DSMIE 2020. LNME, 452-461. https://doi.org/10.1007/978-3-030-50794-7_44 [in English].
15. Kartsev, S.V. (2021). Theoretical and Experimental Justification of the Process of Reduction in Residual Stresses in Wear-Resistant Coatings. J. Mach. Manuf. Reliab. 50, 695–702. https://doi.org/10.3103/S1052618821080057 [in English].
16. Mehta, A., Vasudev, H. & Thakur, L. (2023). Applications of numerical modelling techniques in thermal spray coatings: a comprehensive review. Int J Interact Des Manuf . https://doi.org/10.1007/s12008-023-01511-5 [in English].
17. Guangwu, F., Mingwei, Z., Mingzhu, C. et al. (2024). Stochastic Simulation of Thermal Residual Stress in Environmental Barrier Coated 2.5D Woven Ceramic Matrix Composites. J. of Materi Eng and Perform . https://doi.org/10.1007/s11665-024-09244-6 [in English].
18. Ul’yanitskii, V.Y., Rybin, D.K. & Larichkin, A.Y. (2023). SHOT-PEENING-INDUCED RESIDUAL STRESSES IN POWDER COATINGS PRODUCED BY SPRAYING. J Appl Mech Tech Phy 64, 890–901. https://doi.org/10.1134/S0021894423050188 [in English].
19. Markov, M.A., Kuznetsov, Y.A., Krasikov, A.V. et al. (2021). Features of Determination of Internal Stresses in Functional Coatings. Polym. Sci. Ser. D 14, 257–259. https://doi.org/10.1134/S1995421221020192 [in English].
20. Dobrotvor, I.G., Stukhlyak, P.D., Mykytyshyn, A.G. et al. (2021). Influence of Thickness and Dispersed Impurities on Residual Stresses in Epoxy Composite Coatings. Strength Mater 53, 283–290. https://doi.org/10.1007/s11223-021-00287-x [in English].
21. Shevchuk, V.A. (2024). Methodology of Investigations of the Thermal Stressed State of Bodies with Thin Multilayer Coatings. J Math Sci 278, 780–794. https://doi.org/10.1007/s10958-024-06961-0 [in English].
22. Mishra, B.M., Roy, S. (2022). A FEM-Supported Hybrid Approach for Determination of Stress–Strain Relation of Poly-alloy Coating by Inverse Analysis. Trans Indian Inst Met 75, 2939–2947. https://doi.org/10.1007/s12666-022-02674-7 [in English].
23. Haaja, V., Varis, T., Laurila, J. et al. (2024). Fretting Behavior of WC-Co-Cr Coatings Against QT Steel in Bolted Joint. J Therm Spray Tech . https://doi.org/10.1007/s11666-024-01732-4 [in English].
24. Voronin, N.A. (2022) An Improved Method for Determining Residual Stresses in Thin Hard Coatings. J. Mach. Manuf. Reliab. 51 (Suppl 1), S28–S35. https://doi.org/10.3103/S1052618822090199 [in English].
25. Kravchenko, I.N., Velichko, S.A., Denisov, V.A. et al. (2023). Residual Stresses in Coatings Formed by Electrospark Treatment. J. Mach. Manuf. Reliab. 52, 335–342. https://doi.org/10.3103/S1052618823040076 [in English].
26. Bharadishettar, N., Bhat, K.U. & Bhat, K.S. (2023). Development of adherent antimicrobial copper coatings on stainless steel for healthcare applications. J Mater Sci 58, 15805–15827. https://doi.org/10.1007/s10853-023-09009-x [in English].
27. Schmitt, J., Fiebig, J., Schrüfer, S. et al. (2023). Adjusting Residual Stresses During Cold Spray Deposition of IN718. J Therm Spray Tech . https://doi.org/10.1007/s11666-023-01673-4 [in English].
28. Mednikov, A.F., Ryzhenkov, A.V., Brovka, G.M. et al. (2022). Effect of Stresses Occurring under Modifying 20Kh13 Grade Steel on the Incubation Period of Water Droplet Impact Erosion. Therm. Eng. 69, 844–857. https://doi.org/10.1134/S0040601522110052 [in English].
29. Shepelenko I.V., Krasota A.M., Krasota M.V. (2025). Zmina napruzheno-deformovanogo stanu robochoyi poverhni detali z antifrikcijnim pokrittyam [Changing the stress-strain state of the working surface of a part with an antifriction coating]. Zbirnik naukovih prac. Naukovij visnik. Tehnichni nauki. №11 (42)_І. 179–189. https://doi.org/10.32515/2664-262X.2025.11(42).1.179-189 [in Ukrainian]
30. Shepelenko, I., Nemyrovskyi, Y., Krasota, M., Mahopets, S., Vasylenko, I. (2025). Calculation and Study of the Stress State of the Antifriction Coating Applied to the Working Surface of the Car Cylinder Liner. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G. (eds) Advanced Manufacturing Processes VI. Interpartner 2024. Lecture Notes in Mechanical Engineering. Springer, Cham, pp. 596-605. https://doi.org/10.1007/978-3-031-82746-4_53 [in English].
31. Kislikov, V.F., Lushchik, V.V. (2006). Budova y ekspluatatsiia avtomobiliv [Structure and operation of cars]. Kyiv: Lybid, 400 s [in Ukrainian].
Citations
1. Солових Є.К. Тенденції розвитку технологій поверхневого зміцнення у машинобудуванні : Монографія. Кіровоград : КОД. 2012. 92 с.
2. Shepelenko I.V. Technological factors influence on the antifriction coatings quality. Проблеми трибології (Problems of Tribology), Хмельницький, 2021. Т.26, №2/100. С.50–57. https://doi.org/10.31891/2079-1372-2021-100-2-50-57
3. Відновлення деталей комбінованими технологіями на основі пластичного деформування : монографія / за загальною редакцією Немировського Я.Б., Сторчака М.Г., Шейкіна С.Є., Шепеленка І.В. Харків : «Діса плюс», 2025. 673 с. https://repository.kpi.kharkov.ua/handle/KhPI-Press/94008
4. Yang, H., Jung, WC., Lee, C. et al. Effect of Surface Smoothness on the Structure of Scale and Formation of Surface Cracks in TiAl Alloys under Heat Treatment. Met Sci Heat Treat 63, 414–418 (2021). https://doi.org/10.1007/s11041-021-00704-7
5. Shepelenko, I., Nemyrovskyi, Y., Stepchyn, Y., Mahopets, S., Melnyk, O. (2024). Creation of a Combined Technology for Processing Parts Based on the Application of an Antifriction Coating and Deforming Broaching. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes V. InterPartner 2023. Lecture Notes in Mechanical Engineering. Springer, Cham, pp. 209-218. https://doi.org/10.1007/978-3-031-42778-7_19
6. Sun, T., Jin, K., Wang, T. et al. Synergistic effect of graphene oxide and cathodic protection to enhance the long-term protective performance of organic coatings. J Mater Sci 58, 10853–10869 (2023). https://doi.org/10.1007/s10853-023-08701-2
7. Шепеленко І.В. Наукові основи технології нанесення антифрикційних покриттів з використанням пластичного деформування : автореф. дис. ... д-ра техн. наук: 05.02.08 / НТУУ „КПІ ім. І. Сікорського”. Київ, 2021. 43 с.
8. Багатофункціональні електродугові покриття : монографія / М. М. Студент та ін. Львів : ПростірМ, 2018. 335 с.
9. Фролов Є.А., Кравченко С.І., Попов С.В., Гнітько С.М. Технологічне забезпечення якості продукції машинобудування : монографія. Полтава, 2019. 201 с.
10. Електроіскрові антифрикційні покриття на алюмінієвих сплавах для двигунобудування / Є.К. Солових, О.О. Мікосянчик, А.В. Рутковський, І.В. Шепеленко, А.Є. Солових, С.Є. Катеренич. Під ред. І.О. Подчерняєвої. Кропивницький : ЦНТУ, 2024. 156 с.
11. Lakkannavar, V., Yogesha, K.B., Prasad, C.D. et al. A Review on Tribological and Corrosion Behaviour of Thermal Spray Coatings. J. Inst. Eng. India Ser. D (2024). https://doi.org/10.1007/s40033-024-00636-5
12. Савуляк В.І. Синтез зносостійких композиційних матеріалів та поверхневих шарів з екзотермічних компонентів : монографія. Вінниця: УНІВЕРСУМ-Вінниця, 2002. 161 с.
13. Черновол М.І., Шепеленко І.В. Способи формування антифрикційних покриттів на металеві покриття тертя. Збірник наукових праць Кіровоградського національного технічного університету. Кіровоград, 2012. Вип.25 (1). С.3–8.
14. Shepelenko, I., Nemyrovskyi, Y., Tsekhanov, Y., Mahopets, S., Bevz, O. (2020). Peculiarities of interaction of micro-roughnesses of contacting surfaces at FANT. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D. (eds.) DSMIE 2020. LNME, 452-461. https://doi.org/10.1007/978-3-030-50794-7_44
15. Kartsev, S.V. Theoretical and Experimental Justification of the Process of Reduction in Residual Stresses in Wear-Resistant Coatings. J. Mach. Manuf. Reliab. 50, 695–702 (2021). https://doi.org/10.3103/S1052618821080057
16. Mehta, A., Vasudev, H. & Thakur, L. Applications of numerical modelling techniques in thermal spray coatings: a comprehensive review. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01511-5
17. Guangwu, F., Mingwei, Z., Mingzhu, C. et al. Stochastic Simulation of Thermal Residual Stress in Environmental Barrier Coated 2.5D Woven Ceramic Matrix Composites. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09244-6
18. Ul’yanitskii, V.Y., Rybin, D.K. & Larichkin, A.Y. SHOT-PEENING-INDUCED RESIDUAL STRESSES IN POWDER COATINGS PRODUCED BY SPRAYING. J Appl Mech Tech Phy 64, 890–901 (2023). https://doi.org/10.1134/S0021894423050188
19. Markov, M.A., Kuznetsov, Y.A., Krasikov, A.V. et al. Features of Determination of Internal Stresses in Functional Coatings. Polym. Sci. Ser. D 14, 257–259 (2021). https://doi.org/10.1134/S1995421221020192
20. Dobrotvor, I.G., Stukhlyak, P.D., Mykytyshyn, A.G. et al. Influence of Thickness and Dispersed Impurities on Residual Stresses in Epoxy Composite Coatings. Strength Mater 53, 283–290 (2021). https://doi.org/10.1007/s11223-021-00287-x
21. Shevchuk, V.A. Methodology of Investigations of the Thermal Stressed State of Bodies with Thin Multilayer Coatings. J Math Sci 278, 780–794 (2024). https://doi.org/10.1007/s10958-024-06961-0
22. Mishra, B.M., Roy, S. A FEM-Supported Hybrid Approach for Determination of Stress–Strain Relation of Poly-alloy Coating by Inverse Analysis. Trans Indian Inst Met 75, 2939–2947 (2022). https://doi.org/10.1007/s12666-022-02674-7
23. Haaja, V., Varis, T., Laurila, J. et al. Fretting Behavior of WC-Co-Cr Coatings Against QT Steel in Bolted Joint. J Therm Spray Tech (2024). https://doi.org/10.1007/s11666-024-01732-4
24. Voronin, N.A. An Improved Method for Determining Residual Stresses in Thin Hard Coatings. J. Mach. Manuf. Reliab. 51 (Suppl 1), S28–S35 (2022). https://doi.org/10.3103/S1052618822090199
25. Kravchenko, I.N., Velichko, S.A., Denisov, V.A. et al. Residual Stresses in Coatings Formed by Electrospark Treatment. J. Mach. Manuf. Reliab. 52, 335–342 (2023). https://doi.org/10.3103/S1052618823040076
26. Bharadishettar, N., Bhat, K.U. & Bhat, K.S. Development of adherent antimicrobial copper coatings on stainless steel for healthcare applications. J Mater Sci 58, 15805–15827 (2023). https://doi.org/10.1007/s10853-023-09009-x
27. Schmitt, J., Fiebig, J., Schrüfer, S. et al. Adjusting Residual Stresses During Cold Spray Deposition of IN718. J Therm Spray Tech (2023). https://doi.org/10.1007/s11666-023-01673-4
28. Mednikov, A.F., Ryzhenkov, A.V., Brovka, G.M. et al. Effect of Stresses Occurring under Modifying 20Kh13 Grade Steel on the Incubation Period of Water Droplet Impact Erosion. Therm. Eng. 69, 844–857 (2022). https://doi.org/10.1134/S0040601522110052
29. Шепеленко І.В., Красота А.М., Красота М.В. Зміна напружено-деформованого стану робочої поверхні деталі з антифрикційним покриттям : Науковий вісник. Технічні науки : Збірник наукових праць. №11 (42)_І. Кропивницький, 2025. С.179–189. https://doi.org/10.32515/2664-262X.2025.11(42).1.179-189
30. Shepelenko, I., Nemyrovskyi, Y., Krasota, M., Mahopets, S., Vasylenko, I. (2025). Calculation and Study of the Stress State of the Antifriction Coating Applied to the Working Surface of the Car Cylinder Liner. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G. (eds) Advanced Manufacturing Processes VI. Interpartner 2024. Lecture Notes in Mechanical Engineering. Springer, Cham, pp. 596–605. https://doi.org/10.1007/978-3-031-82746-4_53
31. Кисликов В.Ф., Лущик В.В. Будова й експлуатація автомобілів. Київ : Либідь, 2006. 400 с.
Copyright (c) 2025 Ihor Shepelenko, Artem Krasota, Vasiliy Gutsul, Mykhailo Krasota
Theoretical Calculation and Study of the Stress State of an Anti-friction Coating Applied to the Working Surface of a Camshaft Cam
About the Authors
Ihor Shepelenko, Professor, Doctor of Technical Sciences, Professor of Department of Exploitation and Repairing Machines, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0003-1251-1687, e-mail: kntucpfzk@gmail.com
Artem Krasota, PhD student in Industrial Engineering, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0009-0007-7700-9176, e-mail: kras.kras.kras.365@gmail.com
Vasiliy Gutsul, Associate Professor, Candidate of Technical Sciences, associate professor of the Department of Higher Mathematics and Physics, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https:// orcid.org/0000-0003-4155-5355, e-mail: vigutsul@ukr.net
Mykhailo Krasota, Associate Professor, PhD (Candidate of Technical Sciences), Associate Professor of Department of Exploitation and Repairing Machines, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, https://orcid.org/0000-0001-8791-3264, e-mail: krasotamv@ukr.net
Abstract
Keywords
Full Text:
PDFReferences
1. Solovih, Ye.K. (2012). Trends in the development of surface hardening technologies in mechanical engineering. Kirovohrad : KOD [in Ukrainian].
2. Shepelenko, I.V. (2021). Technological factors influence on the antifriction coatings quality. Проблеми трибології (Problems of Tribology), 26, №2/100. 50–57. https://doi.org/10.31891/2079-1372-2021-100-2-50-57 [in English].
3. Restoration of parts using combined technologies based on plastic deformation : Collective monograph. Kharkiv. Disa Plus, 2025. 673 s. https://repository.kpi.kharkov.ua/handle/KhPI-Press/94008 [in Ukrainian].
4. Yang, H., Jung, WC., Lee, C. et al. (2021). Effect of Surface Smoothness on the Structure of Scale and Formation of Surface Cracks in TiAl Alloys under Heat Treatment. Met Sci Heat Treat 63, 414–418. https://doi.org/10.1007/s11041-021-00704-7 [in English].
5. Shepelenko, I., Nemyrovskyi, Y., Stepchyn, Y., Mahopets, S., Melnyk, O. (2024). Creation of a Combined Technology for Processing Parts Based on the Application of an Antifriction Coating and Deforming Broaching. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes V. InterPartner 2023. Lecture Notes in Mechanical Engineering. Springer, Cham, pp. 209–218. https://doi.org/10.1007/978-3-031-42778-7_19 [in English].
6. Sun, T., Jin, K., Wang, T. et al. (2023). Synergistic effect of graphene oxide and cathodic protection to enhance the long-term protective performance of organic coatings. J Mater Sci 58, 10853–10869. https://doi.org/10.1007/s10853-023-08701-2 [in English].
7. Shepelenko I.V. (2021). Naukovi osnovi tehnologiyi nanesennya antifrikcijnih pokrittiv z vikoristannyam plastichnogo deformuvannya [Scientific basis of the technology of applying antifriction coatings using plastic deformation]. Avtoreferat disertaciyi doktora tehnichnih nauk, 43 s. [in Ukrainian].
8. Multifunctional electric arc coatings. Monograph. Lviv. ProstirM, 2018. 335 s. [in Ukrainian].
9. Frolov, Ye.A., Kravchenko, S.I., Popov, S.V., Hnitko, S.M. (2019). Tekhnolohichne zabezpechennia yakosti produktsii mashynobuduvannia [Technological support for the quality of engineering products]. Poltava, 201 s. [in Ukrainian].
10. Electrospark anti-friction coatings on aluminum alloys for engine building : мonograph. Kropyvnytskyi. CNTU. 2024. 156 s. [in Ukrainian].
11. Lakkannavar, V., Yogesha, K.B., Prasad, C.D. et al. (2024). A Review on Tribological and Corrosion Behaviour of Thermal Spray Coatings. J. Inst. Eng. India Ser. D . https://doi.org/10.1007/s40033-024-00636-5 [in English].
12. Savulyak V.I. (2002). Synthesis of wear-resistant composite materials and surface layers from exothermic components. Monograph. Vinnytsia. UNIVERSUM-Vinnytsia. 161 s. [in Ukrainian].
13. Chernovol M.I., Shepelenko I.V. (2012). Methods of forming anti-friction coatings on metal friction coatings. Collection of scientific works of Kirovograd National Technical University, Kirovograd, 2012. Issue 25 (1). pp. 3–8. [in Ukrainian].
14. Shepelenko, I., Nemyrovskyi, Y., Tsekhanov, Y., Mahopets, S., Bevz, O. (2020). Peculiarities of interaction of micro-roughnesses of contacting surfaces at FANT. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D. (eds.) DSMIE 2020. LNME, 452-461. https://doi.org/10.1007/978-3-030-50794-7_44 [in English].
15. Kartsev, S.V. (2021). Theoretical and Experimental Justification of the Process of Reduction in Residual Stresses in Wear-Resistant Coatings. J. Mach. Manuf. Reliab. 50, 695–702. https://doi.org/10.3103/S1052618821080057 [in English].
16. Mehta, A., Vasudev, H. & Thakur, L. (2023). Applications of numerical modelling techniques in thermal spray coatings: a comprehensive review. Int J Interact Des Manuf . https://doi.org/10.1007/s12008-023-01511-5 [in English].
17. Guangwu, F., Mingwei, Z., Mingzhu, C. et al. (2024). Stochastic Simulation of Thermal Residual Stress in Environmental Barrier Coated 2.5D Woven Ceramic Matrix Composites. J. of Materi Eng and Perform . https://doi.org/10.1007/s11665-024-09244-6 [in English].
18. Ul’yanitskii, V.Y., Rybin, D.K. & Larichkin, A.Y. (2023). SHOT-PEENING-INDUCED RESIDUAL STRESSES IN POWDER COATINGS PRODUCED BY SPRAYING. J Appl Mech Tech Phy 64, 890–901. https://doi.org/10.1134/S0021894423050188 [in English].
19. Markov, M.A., Kuznetsov, Y.A., Krasikov, A.V. et al. (2021). Features of Determination of Internal Stresses in Functional Coatings. Polym. Sci. Ser. D 14, 257–259. https://doi.org/10.1134/S1995421221020192 [in English].
20. Dobrotvor, I.G., Stukhlyak, P.D., Mykytyshyn, A.G. et al. (2021). Influence of Thickness and Dispersed Impurities on Residual Stresses in Epoxy Composite Coatings. Strength Mater 53, 283–290. https://doi.org/10.1007/s11223-021-00287-x [in English].
21. Shevchuk, V.A. (2024). Methodology of Investigations of the Thermal Stressed State of Bodies with Thin Multilayer Coatings. J Math Sci 278, 780–794. https://doi.org/10.1007/s10958-024-06961-0 [in English].
22. Mishra, B.M., Roy, S. (2022). A FEM-Supported Hybrid Approach for Determination of Stress–Strain Relation of Poly-alloy Coating by Inverse Analysis. Trans Indian Inst Met 75, 2939–2947. https://doi.org/10.1007/s12666-022-02674-7 [in English].
23. Haaja, V., Varis, T., Laurila, J. et al. (2024). Fretting Behavior of WC-Co-Cr Coatings Against QT Steel in Bolted Joint. J Therm Spray Tech . https://doi.org/10.1007/s11666-024-01732-4 [in English].
24. Voronin, N.A. (2022) An Improved Method for Determining Residual Stresses in Thin Hard Coatings. J. Mach. Manuf. Reliab. 51 (Suppl 1), S28–S35. https://doi.org/10.3103/S1052618822090199 [in English].
25. Kravchenko, I.N., Velichko, S.A., Denisov, V.A. et al. (2023). Residual Stresses in Coatings Formed by Electrospark Treatment. J. Mach. Manuf. Reliab. 52, 335–342. https://doi.org/10.3103/S1052618823040076 [in English].
26. Bharadishettar, N., Bhat, K.U. & Bhat, K.S. (2023). Development of adherent antimicrobial copper coatings on stainless steel for healthcare applications. J Mater Sci 58, 15805–15827. https://doi.org/10.1007/s10853-023-09009-x [in English].
27. Schmitt, J., Fiebig, J., Schrüfer, S. et al. (2023). Adjusting Residual Stresses During Cold Spray Deposition of IN718. J Therm Spray Tech . https://doi.org/10.1007/s11666-023-01673-4 [in English].
28. Mednikov, A.F., Ryzhenkov, A.V., Brovka, G.M. et al. (2022). Effect of Stresses Occurring under Modifying 20Kh13 Grade Steel on the Incubation Period of Water Droplet Impact Erosion. Therm. Eng. 69, 844–857. https://doi.org/10.1134/S0040601522110052 [in English].
29. Shepelenko I.V., Krasota A.M., Krasota M.V. (2025). Zmina napruzheno-deformovanogo stanu robochoyi poverhni detali z antifrikcijnim pokrittyam [Changing the stress-strain state of the working surface of a part with an antifriction coating]. Zbirnik naukovih prac. Naukovij visnik. Tehnichni nauki. №11 (42)_І. 179–189. https://doi.org/10.32515/2664-262X.2025.11(42).1.179-189 [in Ukrainian]
30. Shepelenko, I., Nemyrovskyi, Y., Krasota, M., Mahopets, S., Vasylenko, I. (2025). Calculation and Study of the Stress State of the Antifriction Coating Applied to the Working Surface of the Car Cylinder Liner. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G. (eds) Advanced Manufacturing Processes VI. Interpartner 2024. Lecture Notes in Mechanical Engineering. Springer, Cham, pp. 596-605. https://doi.org/10.1007/978-3-031-82746-4_53 [in English].
31. Kislikov, V.F., Lushchik, V.V. (2006). Budova y ekspluatatsiia avtomobiliv [Structure and operation of cars]. Kyiv: Lybid, 400 s [in Ukrainian].
Citations
1. Солових Є.К. Тенденції розвитку технологій поверхневого зміцнення у машинобудуванні : Монографія. Кіровоград : КОД. 2012. 92 с.
2. Shepelenko I.V. Technological factors influence on the antifriction coatings quality. Проблеми трибології (Problems of Tribology), Хмельницький, 2021. Т.26, №2/100. С.50–57. https://doi.org/10.31891/2079-1372-2021-100-2-50-57
3. Відновлення деталей комбінованими технологіями на основі пластичного деформування : монографія / за загальною редакцією Немировського Я.Б., Сторчака М.Г., Шейкіна С.Є., Шепеленка І.В. Харків : «Діса плюс», 2025. 673 с. https://repository.kpi.kharkov.ua/handle/KhPI-Press/94008
4. Yang, H., Jung, WC., Lee, C. et al. Effect of Surface Smoothness on the Structure of Scale and Formation of Surface Cracks in TiAl Alloys under Heat Treatment. Met Sci Heat Treat 63, 414–418 (2021). https://doi.org/10.1007/s11041-021-00704-7
5. Shepelenko, I., Nemyrovskyi, Y., Stepchyn, Y., Mahopets, S., Melnyk, O. (2024). Creation of a Combined Technology for Processing Parts Based on the Application of an Antifriction Coating and Deforming Broaching. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes V. InterPartner 2023. Lecture Notes in Mechanical Engineering. Springer, Cham, pp. 209-218. https://doi.org/10.1007/978-3-031-42778-7_19
6. Sun, T., Jin, K., Wang, T. et al. Synergistic effect of graphene oxide and cathodic protection to enhance the long-term protective performance of organic coatings. J Mater Sci 58, 10853–10869 (2023). https://doi.org/10.1007/s10853-023-08701-2
7. Шепеленко І.В. Наукові основи технології нанесення антифрикційних покриттів з використанням пластичного деформування : автореф. дис. ... д-ра техн. наук: 05.02.08 / НТУУ „КПІ ім. І. Сікорського”. Київ, 2021. 43 с.
8. Багатофункціональні електродугові покриття : монографія / М. М. Студент та ін. Львів : ПростірМ, 2018. 335 с.
9. Фролов Є.А., Кравченко С.І., Попов С.В., Гнітько С.М. Технологічне забезпечення якості продукції машинобудування : монографія. Полтава, 2019. 201 с.
10. Електроіскрові антифрикційні покриття на алюмінієвих сплавах для двигунобудування / Є.К. Солових, О.О. Мікосянчик, А.В. Рутковський, І.В. Шепеленко, А.Є. Солових, С.Є. Катеренич. Під ред. І.О. Подчерняєвої. Кропивницький : ЦНТУ, 2024. 156 с.
11. Lakkannavar, V., Yogesha, K.B., Prasad, C.D. et al. A Review on Tribological and Corrosion Behaviour of Thermal Spray Coatings. J. Inst. Eng. India Ser. D (2024). https://doi.org/10.1007/s40033-024-00636-5
12. Савуляк В.І. Синтез зносостійких композиційних матеріалів та поверхневих шарів з екзотермічних компонентів : монографія. Вінниця: УНІВЕРСУМ-Вінниця, 2002. 161 с.
13. Черновол М.І., Шепеленко І.В. Способи формування антифрикційних покриттів на металеві покриття тертя. Збірник наукових праць Кіровоградського національного технічного університету. Кіровоград, 2012. Вип.25 (1). С.3–8.
14. Shepelenko, I., Nemyrovskyi, Y., Tsekhanov, Y., Mahopets, S., Bevz, O. (2020). Peculiarities of interaction of micro-roughnesses of contacting surfaces at FANT. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D. (eds.) DSMIE 2020. LNME, 452-461. https://doi.org/10.1007/978-3-030-50794-7_44
15. Kartsev, S.V. Theoretical and Experimental Justification of the Process of Reduction in Residual Stresses in Wear-Resistant Coatings. J. Mach. Manuf. Reliab. 50, 695–702 (2021). https://doi.org/10.3103/S1052618821080057
16. Mehta, A., Vasudev, H. & Thakur, L. Applications of numerical modelling techniques in thermal spray coatings: a comprehensive review. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01511-5
17. Guangwu, F., Mingwei, Z., Mingzhu, C. et al. Stochastic Simulation of Thermal Residual Stress in Environmental Barrier Coated 2.5D Woven Ceramic Matrix Composites. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09244-6
18. Ul’yanitskii, V.Y., Rybin, D.K. & Larichkin, A.Y. SHOT-PEENING-INDUCED RESIDUAL STRESSES IN POWDER COATINGS PRODUCED BY SPRAYING. J Appl Mech Tech Phy 64, 890–901 (2023). https://doi.org/10.1134/S0021894423050188
19. Markov, M.A., Kuznetsov, Y.A., Krasikov, A.V. et al. Features of Determination of Internal Stresses in Functional Coatings. Polym. Sci. Ser. D 14, 257–259 (2021). https://doi.org/10.1134/S1995421221020192
20. Dobrotvor, I.G., Stukhlyak, P.D., Mykytyshyn, A.G. et al. Influence of Thickness and Dispersed Impurities on Residual Stresses in Epoxy Composite Coatings. Strength Mater 53, 283–290 (2021). https://doi.org/10.1007/s11223-021-00287-x
21. Shevchuk, V.A. Methodology of Investigations of the Thermal Stressed State of Bodies with Thin Multilayer Coatings. J Math Sci 278, 780–794 (2024). https://doi.org/10.1007/s10958-024-06961-0
22. Mishra, B.M., Roy, S. A FEM-Supported Hybrid Approach for Determination of Stress–Strain Relation of Poly-alloy Coating by Inverse Analysis. Trans Indian Inst Met 75, 2939–2947 (2022). https://doi.org/10.1007/s12666-022-02674-7
23. Haaja, V., Varis, T., Laurila, J. et al. Fretting Behavior of WC-Co-Cr Coatings Against QT Steel in Bolted Joint. J Therm Spray Tech (2024). https://doi.org/10.1007/s11666-024-01732-4
24. Voronin, N.A. An Improved Method for Determining Residual Stresses in Thin Hard Coatings. J. Mach. Manuf. Reliab. 51 (Suppl 1), S28–S35 (2022). https://doi.org/10.3103/S1052618822090199
25. Kravchenko, I.N., Velichko, S.A., Denisov, V.A. et al. Residual Stresses in Coatings Formed by Electrospark Treatment. J. Mach. Manuf. Reliab. 52, 335–342 (2023). https://doi.org/10.3103/S1052618823040076
26. Bharadishettar, N., Bhat, K.U. & Bhat, K.S. Development of adherent antimicrobial copper coatings on stainless steel for healthcare applications. J Mater Sci 58, 15805–15827 (2023). https://doi.org/10.1007/s10853-023-09009-x
27. Schmitt, J., Fiebig, J., Schrüfer, S. et al. Adjusting Residual Stresses During Cold Spray Deposition of IN718. J Therm Spray Tech (2023). https://doi.org/10.1007/s11666-023-01673-4
28. Mednikov, A.F., Ryzhenkov, A.V., Brovka, G.M. et al. Effect of Stresses Occurring under Modifying 20Kh13 Grade Steel on the Incubation Period of Water Droplet Impact Erosion. Therm. Eng. 69, 844–857 (2022). https://doi.org/10.1134/S0040601522110052
29. Шепеленко І.В., Красота А.М., Красота М.В. Зміна напружено-деформованого стану робочої поверхні деталі з антифрикційним покриттям : Науковий вісник. Технічні науки : Збірник наукових праць. №11 (42)_І. Кропивницький, 2025. С.179–189. https://doi.org/10.32515/2664-262X.2025.11(42).1.179-189
30. Shepelenko, I., Nemyrovskyi, Y., Krasota, M., Mahopets, S., Vasylenko, I. (2025). Calculation and Study of the Stress State of the Antifriction Coating Applied to the Working Surface of the Car Cylinder Liner. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G. (eds) Advanced Manufacturing Processes VI. Interpartner 2024. Lecture Notes in Mechanical Engineering. Springer, Cham, pp. 596–605. https://doi.org/10.1007/978-3-031-82746-4_53
31. Кисликов В.Ф., Лущик В.В. Будова й експлуатація автомобілів. Київ : Либідь, 2006. 400 с.