DOI: https://doi.org/10.32515/2414-3820.2025.55.50-62
Technology of Group Production of Square Samples from High-Strength Casting Steel 110G13L for Physical and Mechanical Tests
About the Authors
Oleh Sisa, Associate Professor, PhD of technical sciences (Candidate in Technical Sciences), Associate Professor of the Department of Mechanical Engineering, Mechatronics and Robotics, Central Ukraine National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-4783-100X e-mail: sisaoleh@gmail.com
Victor Bokov, Professor, PhD of technical sciences (Candidate of Technical Sciences), Central Ukraine National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/ 0000-0002-9340-1617, e-mail: Viktor.alia.kntu@gmail.com
Volodymyr Mirzak, Associate Professor, PhD of technical sciences (Candidate in Technical Sciences), Associate Professor of the Department of Mechanical Engineering, Mechatronics and Robotics, Central Ukraine National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-4167-7291, e-mail: mirzak.moodle@gmail.com
Denys Tupalenko, postgraduate, Central Ukraine National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0009-0003-6116-1908, e-mail: enistupalenko@gmail.com
Olexandr Dovzhuk, postgraduate, Central Ukraine National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0009-0007-8131-8430, e-mail: dovghukos@gmail.com
Abstract
The working elements of mining and enrichment equipment are wear-resistant products that operate under high specific alternating loads, and therefore are made of high-manganese austenitic casting steel 110G13L. But since the wear resistance of the product depends on the quality of the casting, the manufacturer adds 20 20 100 mm samples of the same steel to each product for physical and mechanical tests.
The manufacture of core samples from casting steel 110G13L is associated with certain technical difficulties. This steel is characterized by the fact that its high wear resistance is combined with high strength, ductility and impact toughness. That is why this steel can be attributed to materials that are difficult to cut.
Of certain practical interest is the use of electrical discharge machining for the manufacture of samples, which is capable of machining any electrically conductive material regardless of its physical properties. Of the three known methods of electrical discharge machining, the most productive is the method of dimensional machining of metals by electric arc (abbreviated as DMA). When implementing the DMA method, the process is carried out by an electric arc, which burns continuously (without pauses) between the electrode-tool and the electrode-workpiece being machined. During the machining process, the hydrodynamic mode of the working fluid performs a triple function: it determines the energy state of the arc, determines the geometric state of the electric arc as a tool for dimensional machining of various surfaces and is responsible for the process of intensive removal of erosion products from the arc combustion zone, which provides the prerequisites for stabilizing the surface machining process. If the DMA method is used to simultaneously form a group of square rods (for example, four) from 110G13L cast steel, the machining efficiency will significantly increase by reducing the number of setups to one. However, the process of DMA of square rods, to which samples from cast steel 110G13L belong, was not the object of research, and therefore the effective electrical and hydrodynamic modes and technological characteristics of processing are unknown, which limits its technological capabilities. Therefore, in order to be able to control the process of DMA of square rods, it is necessary to experimentally establish the relationships between the factors determining the processing mode and the initial technological characteristics.
The purpose of the study is to build mathematical models of the technological characteristics of the DMA process of a group of square rods made of 110G13L cast steel.
The paper proposes a new technological scheme for forming a group of square rods by the method of DMA, which provides pumping of the working fluid in the end interelectrode gap without the formation of a "stagnant" zone, which allows stabilizing the processing process. Mathematical models of the process of group DMA of samples have been obtained, which allow controlling the processing productivity, specific processing productivity, specific electricity consumption, roughness of the processed surface, as well as the lateral interelectrode gap and relative linear wear of the graphite electrode-tool. It is shown that the use of the technology of group DMA of rod samples, compared with sequential electric pulse processing, allows increasing the processing productivity by 12-15 times.
Keywords
steel 110G13L, electric arc, hydrodynamic flow, technological scheme of group forming of square samples, technological characteristics
Full Text:
PDF
References
1. Buhay, L. A. (2023). Reducing the labor intensity of mechanical processing of products from high-manganese steels. Hirnychyy visnyk, 111, 83–89 [in Ukrainian].
2. Sisa, O. F. & Nosulenko, V. I . (2005). Alternative method of processing high-strength wear-resistant materials. Visnyk Kremenchutsʹkoho derzhavnoho politekhnichnoho universytetu, 6, 136–138 [in Ukrainian].
3. Uzlov, K. I., Movchan, O. M., Chernysh, Т. О. & Sapunov, Yu. M. (2018). Analysis of regulatory requirements for VM-steel and development of a method for microstructural control of its grain boundary characteristics. Teoriya i praktyka metalurhiyi, 3–5, 56–59 [in Ukrainian].
4. Mazur, M. P., Vnukov, Yu. M., Dobroskok, V. L., Zaloga, V. O., Novosyolov, Yu. K., Yakubov, F. Ya., & M.P. Mazur (Ed.) (2000). Fundamentals of the theory of cutting materials. (2th еd.). Lviv: Novyy svit 2000 [in Ukrainian].
5. Kamenskikh, A. A., Muratov, K. R., Shlykov, E. S., Sidhu, S. S., Mahajan, A., Kuznetsova, Y. S., & Ablyaz, T. R. (2023). Recent trends and developments in the Electrical Discharge Machining Industry: A review. J. Manuf. Mater. Process. 7, 204. https://doi.org/10.3390/jmmp7060204 [in English].
6. Nugroho, B., Yahya, A ., Mat Sidek, A. R., Andromeda, T., & Khamis, N. H. (2020). Current Pulse Generated by Spark of Electrical Discharge Machining (EDM). IOP Conference Series: Journel of Phisics. IOP Publishing, 1529:042109. doi:10.1088/1742-6596/1529/4/042109 [in English].
7. Lu, B., Tang, K., Wu, M.X., Yang, Y., & Yang, G. (2024). Mechanism of electropulsing treatment technology for flow stress of metal material: A review. Alloys. 3(1), 96–125. https://doi.org/10.3390/alloys3010006 [in English].
8. Bokov, V. M. (2002). Rozmirne formoutvorennia poverkhon elektrychnoiu duhoiu [Dimensional shaping of surfaces by an electric arc]. Kirovohrad: Polihrafichno-vydavnychyi tsentr TOV «Imeks LTD» [in Ukrainian].
9. Bokov, V. M. & Sisa, O. F. (2013). Obrobliuvanist materialiv elektrychnoiu duhoiu [Processing of materials with an electric arc]. Kirovohrad: Polihrafichno-vydavnychyi tsentr TOV «Imeks LTD» [in Ukrainian].
10. Nosulenko, V. I. (1999). Rozmirna obrobka metaliv elektrychnoiu duhoiu [Dimensional processing of metals with an electric arc]. Extended abstract of doctor's thesis. Kyiv : NTUU «KPI» [in Ukrainian].
Citations
1. Бугай Л. А. Зниження трудомісткості механічної обробки продукції з високомарганцевих сталей. Гірничий вісник: зб. наук. праць. Кривий Ріг, 2023. Вип.111. С. 83–89.
2. Сіса О. Ф., Носуленко В. І. Альтернативний спосіб обробки високоміцних зносостійкість матеріалів. Вісник Кременчуцького державного політехнічного університету. Кременчук: КДПУ, 2005. Вип.6. С. 136–138.
3. Узлов К. І. Аналіз нормативних вимог до ВМ-сталі та розробка методики мікроструктурного контролю зереннограничних її характеристик / К. І. Узлов, О. М. Мовчан, Т. О. Черниш, Ю. М. Сапунов, Теорія і практика металургії: заг. держ. наук. журн. Дніпро, 2018. №3–5. С. 56–59.
4. Мазур М.П. Основи теорії різання матеріалів : підручник [для вищ. навч. закладів] / М.П.Мазур та ін.; під заг. ред. М.П.Мазура. 2-е вид. перероб. і доп. Львів : Новий світ 2000, 2001. С.422.
5. Kamenskikh, A.A., Muratov, K.R., Shlykov, E.S., Sidhu, S.S., Mahajan, A., Kuznetsova, Y.S., Ablyaz, T.R.: Recent trends and developments in the Electrical Discharge Machining Industry: A review. J. Manuf. Mater. Process. 2023,7, 204. https://doi.org/10.3390/jmmp7060204.
6. Nugroho, B., Yahya, A ., Mat Sidek, A. R., Andromeda, T., Khamis, N. H., Current Pulse Generated by Spark of Electrical Discharge Machining (EDM). IOP Conference Series: Journel of Phisics, 2020. IOP Publishing, 1529:042109. doi:10.1088/1742-6596/1529/4/042109.
7. Lu, B., Tang, K., Wu, M.X., Yang, Y., Yang, G.: Mechanism of electropulsing treatment technology for flow stress of metal material: A review. Alloys 2024, 3(1), pp. 96–125. https://doi.org/10.3390/alloys3010006.
8. Боков В. М. Розмірне формоутворення поверхонь електричною дугою. Кіровоград : Поліграфічно-видавничий центр ТОВ «Імеkc ЛТД», 2002. 300 с.
9. Боков В. М., Сіса О. Ф. Оброблюваність матеріалів електричною дугою . Кіровоград : Поліграфічно-видавничий центр ТОВ «Імеkc ЛТД», 2013. 172 с.
10. Носуленко В. І. Розмірна обробка металів електричною дугою : автореф. дис. … д-ра техн. наук: 05.03.07 / НТУУ «КПІ» : Київ, 1999. 36 с.
Copyright (c) 2025 Oleh Sisa, Victor Bokov, Volodymyr Mirzak, Denys Tupalenko, Olexandr Dovzhuk
Technology of Group Production of Square Samples from High-Strength Casting Steel 110G13L for Physical and Mechanical Tests
About the Authors
Oleh Sisa, Associate Professor, PhD of technical sciences (Candidate in Technical Sciences), Associate Professor of the Department of Mechanical Engineering, Mechatronics and Robotics, Central Ukraine National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-4783-100X e-mail: sisaoleh@gmail.com
Victor Bokov, Professor, PhD of technical sciences (Candidate of Technical Sciences), Central Ukraine National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/ 0000-0002-9340-1617, e-mail: Viktor.alia.kntu@gmail.com
Volodymyr Mirzak, Associate Professor, PhD of technical sciences (Candidate in Technical Sciences), Associate Professor of the Department of Mechanical Engineering, Mechatronics and Robotics, Central Ukraine National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-4167-7291, e-mail: mirzak.moodle@gmail.com
Denys Tupalenko, postgraduate, Central Ukraine National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0009-0003-6116-1908, e-mail: enistupalenko@gmail.com
Olexandr Dovzhuk, postgraduate, Central Ukraine National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0009-0007-8131-8430, e-mail: dovghukos@gmail.com
Abstract
Keywords
Full Text:
PDFReferences
1. Buhay, L. A. (2023). Reducing the labor intensity of mechanical processing of products from high-manganese steels. Hirnychyy visnyk, 111, 83–89 [in Ukrainian].
2. Sisa, O. F. & Nosulenko, V. I . (2005). Alternative method of processing high-strength wear-resistant materials. Visnyk Kremenchutsʹkoho derzhavnoho politekhnichnoho universytetu, 6, 136–138 [in Ukrainian].
3. Uzlov, K. I., Movchan, O. M., Chernysh, Т. О. & Sapunov, Yu. M. (2018). Analysis of regulatory requirements for VM-steel and development of a method for microstructural control of its grain boundary characteristics. Teoriya i praktyka metalurhiyi, 3–5, 56–59 [in Ukrainian].
4. Mazur, M. P., Vnukov, Yu. M., Dobroskok, V. L., Zaloga, V. O., Novosyolov, Yu. K., Yakubov, F. Ya., & M.P. Mazur (Ed.) (2000). Fundamentals of the theory of cutting materials. (2th еd.). Lviv: Novyy svit 2000 [in Ukrainian].
5. Kamenskikh, A. A., Muratov, K. R., Shlykov, E. S., Sidhu, S. S., Mahajan, A., Kuznetsova, Y. S., & Ablyaz, T. R. (2023). Recent trends and developments in the Electrical Discharge Machining Industry: A review. J. Manuf. Mater. Process. 7, 204. https://doi.org/10.3390/jmmp7060204 [in English].
6. Nugroho, B., Yahya, A ., Mat Sidek, A. R., Andromeda, T., & Khamis, N. H. (2020). Current Pulse Generated by Spark of Electrical Discharge Machining (EDM). IOP Conference Series: Journel of Phisics. IOP Publishing, 1529:042109. doi:10.1088/1742-6596/1529/4/042109 [in English].
7. Lu, B., Tang, K., Wu, M.X., Yang, Y., & Yang, G. (2024). Mechanism of electropulsing treatment technology for flow stress of metal material: A review. Alloys. 3(1), 96–125. https://doi.org/10.3390/alloys3010006 [in English].
8. Bokov, V. M. (2002). Rozmirne formoutvorennia poverkhon elektrychnoiu duhoiu [Dimensional shaping of surfaces by an electric arc]. Kirovohrad: Polihrafichno-vydavnychyi tsentr TOV «Imeks LTD» [in Ukrainian].
9. Bokov, V. M. & Sisa, O. F. (2013). Obrobliuvanist materialiv elektrychnoiu duhoiu [Processing of materials with an electric arc]. Kirovohrad: Polihrafichno-vydavnychyi tsentr TOV «Imeks LTD» [in Ukrainian].
10. Nosulenko, V. I. (1999). Rozmirna obrobka metaliv elektrychnoiu duhoiu [Dimensional processing of metals with an electric arc]. Extended abstract of doctor's thesis. Kyiv : NTUU «KPI» [in Ukrainian].
Citations
1. Бугай Л. А. Зниження трудомісткості механічної обробки продукції з високомарганцевих сталей. Гірничий вісник: зб. наук. праць. Кривий Ріг, 2023. Вип.111. С. 83–89.
2. Сіса О. Ф., Носуленко В. І. Альтернативний спосіб обробки високоміцних зносостійкість матеріалів. Вісник Кременчуцького державного політехнічного університету. Кременчук: КДПУ, 2005. Вип.6. С. 136–138.
3. Узлов К. І. Аналіз нормативних вимог до ВМ-сталі та розробка методики мікроструктурного контролю зереннограничних її характеристик / К. І. Узлов, О. М. Мовчан, Т. О. Черниш, Ю. М. Сапунов, Теорія і практика металургії: заг. держ. наук. журн. Дніпро, 2018. №3–5. С. 56–59.
4. Мазур М.П. Основи теорії різання матеріалів : підручник [для вищ. навч. закладів] / М.П.Мазур та ін.; під заг. ред. М.П.Мазура. 2-е вид. перероб. і доп. Львів : Новий світ 2000, 2001. С.422.
5. Kamenskikh, A.A., Muratov, K.R., Shlykov, E.S., Sidhu, S.S., Mahajan, A., Kuznetsova, Y.S., Ablyaz, T.R.: Recent trends and developments in the Electrical Discharge Machining Industry: A review. J. Manuf. Mater. Process. 2023,7, 204. https://doi.org/10.3390/jmmp7060204.
6. Nugroho, B., Yahya, A ., Mat Sidek, A. R., Andromeda, T., Khamis, N. H., Current Pulse Generated by Spark of Electrical Discharge Machining (EDM). IOP Conference Series: Journel of Phisics, 2020. IOP Publishing, 1529:042109. doi:10.1088/1742-6596/1529/4/042109.
7. Lu, B., Tang, K., Wu, M.X., Yang, Y., Yang, G.: Mechanism of electropulsing treatment technology for flow stress of metal material: A review. Alloys 2024, 3(1), pp. 96–125. https://doi.org/10.3390/alloys3010006.
8. Боков В. М. Розмірне формоутворення поверхонь електричною дугою. Кіровоград : Поліграфічно-видавничий центр ТОВ «Імеkc ЛТД», 2002. 300 с.
9. Боков В. М., Сіса О. Ф. Оброблюваність матеріалів електричною дугою . Кіровоград : Поліграфічно-видавничий центр ТОВ «Імеkc ЛТД», 2013. 172 с.
10. Носуленко В. І. Розмірна обробка металів електричною дугою : автореф. дис. … д-ра техн. наук: 05.03.07 / НТУУ «КПІ» : Київ, 1999. 36 с.