DOI: https://doi.org/10.32515/2414-3820.2025.55.80-90

Modeling of Aerodynamic Processes in the Cleaning of Grain Mass in an Airflow

Hennadii Tesliuk, Olena Zolotovska, Oleksandr Kobets, Andrii Kovсun

About the Authors

Hennadii Tesliuk, Associate Professor, PhD in Technical Sciences (Candidate of Technical Sciences), Head of the Department of Tractors and Agricultural Machinery, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID: https://orcid.org/0000-0003-4541-5720, e-mail: tesliuk.h.v@dsau.dp.ua

Olena Zolotovska, Associate Professor, PhD in Technical Sciences (Candidate of Technical Sciences), Associate Professor of the Department of Tractors and Agricultural Machinery, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID: https://orcid.org/0000-0001-5617-9271, e-mail: zolotovska.o.v@dsau.dp.ua

Oleksandr Kobets, Associate Professor, PhD in Technical Sciences (Candidate of Technical Sciences), Associate Professor of the Department of Tractors and Agricultural Machinery, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID: https://orcid.org/0009-0009-5334-0133, e-mail: kobets.o.m@dsau.dp.ua

Andrii Kovсun, PhD student of the Department of Tractors and Agricultural Machinery, Dnipro State Agrarian and Economic University, Dnipro, Ukraine, ORCID: https://orcid.org/0009-0003-7726-9243, e-mail: kovcunandrij0@gmail.com

Abstract

The purpose of this article is to substantiate and model the aerodynamic processes that occur during the cleaning of grain mass in airflow-based separation systems. The research is aimed at identifying optimal technological and structural parameters of air-sieve machines, determining the influence of airflow velocity and sieve configuration on the effectiveness of separation, and developing mathematical models that can describe the probability of particle allocation in the cleaning process. Special attention is paid to the statistical interpretation of experimental data in order to establish the most appropriate laws of particle distribution for practical application in post-harvest grain processing. The study combines theoretical modeling with experimental investigations. Laboratory tests were conducted to evaluate the effect of airflow velocity on the movement of wheat grain fractions and to assess their distribution by thickness using variable sieve openings. The obtained data confirmed that both aerodynamic and geometric characteristics of the particles follow the normal distribution law, verified through Pearson’s chi-squared test. Based on these findings, mathematical models were developed to describe the probability of grain particle separation into fractions depending on their floating velocity and physical parameters. The experimental results demonstrated that sieve openings of 2.4–2.6 mm provide the highest cleaning quality, reaching a separation completeness of εb = 0.81. Under these conditions, the loss of valuable full-sized kernels was minimized while ensuring the removal of broken grains, weed seeds, and other impurities. The research also emphasized the importance of precise airflow adjustment to prevent excessive carryover of high-quality grain into the waste fraction. The conclusions of this work confirm that the efficiency of grain cleaning can be significantly increased through the correct selection of airflow velocity and sieve dimensions in pneumatic separation systems. The developed mathematical models and recommendations provide a solid basis for improving the design of air-sieve machines, reducing energy losses, and enhancing the quality of food and seed grain. The obtained results can be applied in modern grain processing technologies, offering practical guidance for optimizing equipment operation and increasing the competitiveness of agricultural production.

Keywords

grain cleaning, pneumatic separation, airflow velocity, aerodynamic properties, grain thickness, sorting sieve, air-sieve cleaning machine, normal distribution

Full Text:

PDF

References

1. Kalchenko, A. I. (2012). Teoriia i praktyka ochyshchennia zerna [Theory and practice of grain cleaning]. Kyiv: Urozhai [in Ukrainian].

2. Marchenko, O. M., & Savchenko, O. Yu. (2020). Povitriani separatsiini systemy: rozrakhunok i optymizatsiia [Air separation systems: calculation and optimization]. Kharkiv: KhNAU [in Ukrainian].

3. Baranovskyi, V. M. (2018). Osnovy aerodynamichnoho podilu zernovykh sumishei [Fundamentals of aerodynamic separation of grain mixtures]. Lviv: LNAU [in Ukrainian].

4. Diachenko, S. M. (2019). Doslidzhennia dynamiky zernovoho vorokhu v aspiratsiinykh kanalakh [Study of grain heap dynamics in aspiration channels]. Visnyk ahrarnoi nauky, 6, 37–41 [in Ukrainian].

5. Hetman, V. V., & Kozachok, O. O. (2021). Mekhanizovani protsesy ochyshchennia zernovykh kultur [Mechanized processes of grain crop cleaning]. Kropyvnytskyi: TsNTEI [in Ukrainian].

6. Kuznetsov, A. P., & Gritsenko, A. V. (2017). Aerodynamics of granular agricultural materials. Springer.

7. Koval, S. Ya. (2020). Doslidzhennia efektyvnosti povitrianoho ochyshchennia zerna [Study of grain air cleaning efficiency]. Naukovi pratsi TDATU, 4(100), 45–50 [in Ukrainian].

8. Kuzmenko, V. M. (2016). Silskohospodarski mashyny. Part 2: Zernoochysna tekhnika [Agricultural machines. Part 2: Grain cleaning equipment]. Kyiv: Lira-K [in Ukrainian].

9. Tatarchuk, V. I. (2022). Povitriano-reshitni zernoochysni mashyny: rozrakhunok ta ekspluatatsiia [Air-sieve grain cleaning machines: calculation and operation]. Poltava: PDAA [in Ukrainian].

10. Zhao, Y., Zhang, Y., & Zhang, W. (2021). Experimental and CFD study on separation of wheat impurities by airflow. Journal of Food Process Engineering, 44(7), e13750.

11. He, X., Zhang, B., & Liu, Q. (2019). Influence of grain size and airflow velocity on cleaning performance in air-screen seed separators. Agricultural Engineering International: CIGR Journal, 21(3), 46–54.

12. Vaiciukevičius, E., Jotautienė, E., Kemzūraitė, A., Tamošiūnas, A., Čiplienė, A., & Petrauskienė, R. (2023). Determination of optimal technological parameters for wheat grain sorting in airflow. Processes, 11(10), 3441. https://doi.org/10.3390/pr11103441

Citations

1. Кальченко А. І. Теорія і практика очищення зерна. Київ : Урожай, 2012. 284 с.

2. Марченко О. М., Савченко О. Ю. Повітряні сепараційні системи: розрахунок і оптимізація. Харків : ХНАУ, 2020. 198 с.

3. Барановський В. М. Основи аеродинамічного поділу зернових сумішей. Львів : ЛНАУ, 2018. 160 с.

4. Дяченко С. М. Дослідження динаміки зернового вороху в аспіраційних каналах. Вісник аграрної науки. 2019. № 6. С. 37–41.

5. Гетьман В. В., Козачок О. О. Механізовані процеси очищення зернових культур. Кропивницький : ЦНТЕІ, 2021. 176 с.

6. Kuznetsov A. P., Gritsenko A. V. Aerodynamics of granular agricultural materials. Springer, 2017.

7. Коваль С. Я. Дослідження ефективності повітряного очищення зерна. Наукові праці ТДАТУ. 2020. № 4(100). С. 45–50.

8. Кузьменко В. М. Сільськогосподарські машини. Ч. 2 : Зерноочисна техніка. Київ : Ліра-К, 2016. 312 с.

9. Татарчук В. І. Повітряно-решітні зерноочисні машини: розрахунок та експлуатація. Полтава : ПДАА, 2022. 138 с.

10. Zhao Y., Zhang Y., Zhang W. Experimental and CFD study on separation of wheat impurities by airflow. Journal of Food Process Engineering. 2021. Vol. 44, No. 7. e13750.

11. He X., Zhang B., Liu Q. Influence of grain size and airflow velocity on cleaning performance in air-screen seed separators. Agricultural Engineering International: CIGR Journal. 2019. Vol. 21, No. 3. P. 46–54.

12. Vaiciukevičius E., Jotautienė E., Kemzūraitė A., Tamošiūnas A., Čiplienė A., Petrauskienė R. Determination of optimal technological parameters for wheat grain sorting in airflow. Processes. 2023. Vol. 11, No. 10. P. 3441. DOI: https://doi.org/10.3390/pr11103441

Copyright (c) 2025 Hennadii Tesliuk, Olena Zolotovska, Oleksandr Kobets, Andrii Kovсun