DOI: https://doi.org/10.32515/2414-3820.2025.55.257-272

Development of a Modular Soil Mini-channel for Research of Rotary Tools: Design Features

Volodymyr Vetokhin, Tetiana Ryzhkova, Oleksandr Rebenok, Vladyslav Zaslavets, Andrii Korenivskyi, Volodymyr Amosov

About the Authors

Volodymyr Vetokhin, Associate Professor, Doctor of Technical Sciences, Professor of the Department of Mechanical and Electrical Engineering, Poltava State Agrarian University, Poltava, Ukraine, ORCID: https://orcid.org/0000-0002-7299-3094, e-mail: veto.vladim@gmail.com

Tetiana Ryzhkova, Senior Lecturer of Department of Construction and Professional Education, Poltava State Agrarian University, Poltava, Ukraine, ORCID: https://orcid.org/0000-0002-2403-6396, e-mail: tetiana.ryzhkova@pdau.edu.ua

Oleksandr Rebenokv, Postgraduate Student, Poltava State Agrarian University, Poltava, Ukraine, ORCID: https://orcid.org/0009-0000-5578-9502, e-mail: oleksandr.rebenok@pdau.edu.ua

Vladyslav Zaslavets, Postgraduate Student, Poltava State Agrarian University, Poltava, Ukraine, ORCID: https://orcid.org/0009-0008-8473-4162, e-mail: vladyslav.zaslavets@pdau.edu.ua

Andrii Korenivskyi, Postgraduate Student, Poltava State Agrarian University, Poltava, Ukraine, ORCID: https://orcid.org/0009-0006-7106-1478, e-mail: andrii.korenivskyi@pdau.edu.ua

Volodymyr Amosov, Associate Professor, PhD (Candidate of Technical Sciences), Associate Professor of the Department of Agricultural Machine Building, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID: https://orcid.org/0000-0002-0154-2886, e-mail: v_vas_a@ukr.net

Abstract

The article presents the results of the design and manufacture of a small-sized soil bin taking into account the specifics of the functioning of rotary tools. The object of research is research equipment in the form of a soil bin, intended for scientific and educational study of rotary tools. The problem to be solved was to find out the specifics of the operation of rotary tools and to design a small-sized soil bin taking into account these specifics. The data obtained in the course of experimental research and theoretical analysis confirmed the determining influence of the kinematic parameter on the indicators of the interaction between the rotary tool and the soil. As a result of the research, a concept was proposed and a soil mini-bin was designed, which allows investigate both the mechanics of the process and performing graphic modeling. The obtained result is explained by the fact that the mediator of motion transmission during the experiments is a soil trough, and the drive belt is rearranged in engagement with pulleys of different diameters. This provides a different ratio of linear movement of the cuvette and rotation of the working body. The peculiarity of the design is the combination of variable movable cuvettes and graphic screens with a stationary position of the rotor. The design provides simplicity and visibility of the assignment of different values of the kinematic parameter. A distinctive feature is the modularity of the layout. This allows you to conduct research with variable cuvettes with different soil composition, and immediately receive a graphic interpretation of the kinematic mode on the screen. This implementation of the soil mini- bin simplifies the observation and recording of the result of the interaction of the rotor with the model environment. The field of practical use is scientific research in the field of agricultural engineering. The obtained data can be used to improve existing tools. The research process is part of the educational process at the agricultural university.

Keywords

soil bin, rotary implement, kinematic parameter, trajectory, soil-tool interaction, tillage

Full Text:

PDF

References

1. Kornienko, S., Pascenco, V., Melnik, V., Kharchenko, S., & Khramov, N. (2016). Developing the method of constructing mathematical models of soil condition under the action of a wedge. Eastern-European Journal of Enterprise Technologie, 5/7 (83), 34–43. https://doi.org/10.15587/1729-4061.2016.79912 .

2. Vetokhin, V.I., Panov, I.M., Shmonin, V.A., & Yuzbashev, V.A. (2009).Traction-driven combined tillage machines: Theory, calculation, test results . Kyiv: PHOENIX, 264. URL: https://dspace.pdau.edu.ua/handle/123456789/15056

3. Roozbahani, A., Mardani, A., Jokar, R., Taghavifar, H. (2013). Evaluating and measuring the performance parameters of agricultural wheels. Int. J. Agricultural and Biosystems Engineering, 7 (2), 158–162. https://doi.org/10.5281/zenodo.1326793

4. Lajani, A., Nikbakht, A. M., Askari, M., & Salar, M. R. (2024). Design, construction and evaluation of a miniature soil bin plus predicting the measured parameters during primary tests using ANFIS. Heliyon, 10, 1, e24041. https://doi.org/10.1016/j.heliyon.2024.e24041.

5. Godwin, R. J., Spoor, G. (1977). Soil Failure with Narrow Tines. Journal of Agricultural Engineering, 22, 213–228. http://dx.doi.org/10.1016/0021-8634(77)90044-0

6. Mardani, A., & Golanbari, B. (2024). Indoor measurement and analysis on soil-traction device interaction using a soil bin. Scientific Reports, 14, 10077. https://doi.org/10.1038/s41598-024-59800-2

7. Upadhyay, G., & Raheman, H. (2018). Performance of combined offset disc harrow (front active and rear passive set configuration) in soil bin. Journal of Terramechanics, 78, 27–37. https://doi.org/10.1016/j.jterra.2018.04.002

8. Upadhyay, G., & Raheman, H. (2020). Effect of Velocity Ratio on Performance Characteristics of an Active-Passive Combination Tillage Implement. Biosystems Engineering, 191, 1–12. https://doi.org/10.1016/j.biosystemseng.2019.12.010

9. Celik, A., Ozturk, I., & Way, T.R. (2008). A theoretical approach for determining irregularities of the bottom of the tillage layer caused by horizontal axis rotary tillers. Agricultural Engineering International: the CIGR Ejournal, 10, 1–9. Available at: https://cigrjournal.org/index.php/Ejounral/article/view/1168

10. Hendrick, J.G., & Gill, W.R. (1971). Rotary-tiller design parameters: Part II. Depth of tillage. Transactions of the ASAE, 14(4), 675–678. http://dx.doi.org/ 10.13031/2013.38365

11. Ozoemena, A. Ani, Uzoejinwa, B.B., Ezeama, A.O., Onwualu, A.P., Ugwu, S.N., Ohagwu, C.J. (2018). Overview of soil-machine interaction studies in soil bins. Soil and Tillage Research, 175, 13–27. https://doi.org/10.1016/j.still.2017.08.002

12. Vetokhin, V., Negrebetskyi, I., Ryzhkova, T., Salo, Y., & Voznyuk, T. (2021) Analytical review of technical solutions for bare rotary projectiles for introducing rare fertilizers into a ball of soil. Technical and technological aspects of the development and testing of new equipment and technologies for the agricultural state of Ukraine, 29(43), 95–107. http://dx.doi.org/10.31473/2305-5987-2021-1-29(43)-9

13. Vetokhin, V., Popov, S., Ryzhkova, T., Negrebetskyi, I., Leshchenko, S., Amosov, V., Machok, Y., & Petrenko, D. (2024). Improving the soil bin for studying rotary tools taking into account the kinematic features of interaction with the soil. Eastern-European Journal of Enterprise Technologies, 6(1 (132), 31–40. https://doi.org/10.15587/1729-4061.2024.315127

Citations

1. Kornienko, S., Pascenco, V., Melnik, V., Kharchenko, S., Khramov, N. Developing the method of constructing mathematical models of soil condition under the action of a wedge. Eastern-European Journal of Enterprise Technologie. 2016. 5/7 (83), 34–43. https://doi.org/10.15587/1729-4061.2016.79912

2. Ветохін, В.І., Панов, І.М., Шмонин, В.А., Юзбашев, В.А. Тягово-приводні комбіновані ґрунтообробні машини: Теорія, розрахунок, результати випробувань : монография. Київ: ФЕНИКС, 2009. 264с. Available at: https://dspace.pdau.edu.ua/handle/123456789/15056

3. Roozbahani, A., Mardani, A., Jokar, R., Taghavifar, H. (2013). Evaluating and measuring the performance parameters of agricultural wheels. Int. J. Agricultural and Biosystems Engineering, 7 (2), 158–162. https://doi.org/10.5281/zenodo.1326793

4. Lajani, A., Nikbakht, A. M., Askari, M., Salar, M. R. (2024). Design, construction and evaluation of a miniature soil bin plus predicting the measured parameters during primary tests using ANFIS. Heliyon, 10, 1, e24041. https://doi.org/10.1016/j.heliyon.2024.e24041

5. Godwin, R. J., Spoor, G. (1977). Soil Failure with Narrow Tines. Journal of Agricultural Engineering, 22, 213–228. http://dx.doi.org/10.1016/0021-8634(77)90044-0

6. Mardani, A., Golanbari, B. (2024). Indoor measurement and analysis on soil-traction device interaction using a soil bin. Scientific Reports, 14, 10077. https://doi.org/10.1038/s41598-024-59800-2

7. Upadhyay, G. Raheman H. (2018). Performance of combined offset disc harrow (front active and rear passive set configuration) in soil bin. Journal of Terramechanics, 78, 27–37. https://doi.org/10.1016/j.jterra.2018.04.002

8. Upadhyay, G., Raheman, H. (2020). Effect of Velocity Ratio on Performance Characteristics of an Active-Passive Combination Tillage Implement. Biosystems Engineering, 191, 1–12. https://doi.org/10.1016/j.biosystemseng.2019.12.010

9. Celik, A., Ozturk, I., Way, T.R. (2008). A theoretical approach for determining irregularities of the bottom of the tillage layer caused by horizontal axis rotary tillers. Agricultural Engineering International: the CIGR Ejournal, 10, 1–9. Available at: https://cigrjournal.org/index.php/Ejounral/article/view/1168

10. Hendrick, J.G., Gill, W.R. (1971). Rotary-tiller design parameters: Part II. Depth of tillage. Transactions of the ASAE, 14(4), 675–678. http://dx.doi.org/ 10.13031/2013.38365

11. Ozoemena, A. Ani, Uzoejinwa, B.B., Ezeama, A.O., Onwualu, A.P., Ugwu, S.N., Ohagwu, C.J. (2018). Overview of soil-machine interaction studies in soil bins. Soil and Tillage Research, 175, 13–27. https://doi.org/10.1016/j.still.2017.08.002

12. Ветохін, В., Негребецький, І., Рижкова, Т., Сало, Я., Вознюк Т. (2021). Аналітичний огляд технічних рішень голчастих ротаційних знарядь для внесення рідких добрив в шар ґрунту. Техніко-технологічні аспекти розвитку та випробування нової техніки і технологій для сільського господарства України, №29(43), С.95–107. http://dx.doi.org/10.31473/2305-5987-2021-1-29(43)-9

13. Vetokhin, V., Popov, S., Ryzhkova, T., Negrebetskyi, I., Leshchenko, S., Amosov, V., Machok, Y., & Petrenko, D. (2024). Improving the soil bin for studying rotary tools taking into account the kinematic features of interaction with the soil. Eastern-European Journal of Enterprise Technologies, 6(1 (132), 31–40. https://doi.org/10.15587/1729-4061.2024.315127

Copyright (c) 2025 Volodymyr Vetokhin, Tetiana Ryzhkova, Oleksandr Rebenok, Vladyslav Zaslavets, Andrii Korenivskyi, Volodymyr Amosov