DOI: https://doi.org/10.32515/2414-3820.2019.49.34-42

Justification of Technological Parameters of the Grain Separator

Dmytro Bohatyrov, Ivan Skrynnik, Oksana Yurchenko

About the Authors

Dmytro Bohatyrov, Professor, Doctor in Technics (Doctor of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi

Ivan Skrynnik, Professor, Doctor in Technics (Doctor of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi

Oksana Yurchenko, Assistent Professor, Central Ukraіnian National Technical University, Kropyvnytskyi

Abstract

The article is developed the problem to pneumatic-impulsive separation according to density. Harvesting is one of the important operations in agribusiness. Wheat grain is selected according to different indicators. They are all correlated with grain density. Grain density affects the yield and nutrition of the produce. The analysis of modern equipment has indicated a new direction of research. The purpose of the work is formulated: increase of efficiency and productivity of the process of separation of seeds by density in the state of fluidization; reducing energy consumption through the use of pulsating airflow. Analysis of the designs of modern separators indicated the way of modernization of the separator. The authors proposed to replace fluctuations sieves pulsation air. This will reduce energy costs and improve quality performance. To confirm the idea, the authors developed a new separator. Structurally, it consists of two parts: the first creates the required flow of air, and the second - divides the grain by density. The second part is a pneumatic duct with a partition. The grain is filled with a conveyor in the hopper. The flap in the hopper regulates the flow of grain into the pneumatic duct. The channel is horizontally divided by a partition. The partition transmits air. On the partition, the grain layer is fluidized. A pulsator is installed between the fan and the duct. It consists of an electric motor and a damper. During operation of the electric motor, the damper closes the pneumatic channel or open. This creates a ripple of air in the pneumatic duct beneath the partition. The pneumatic duct has two flaps for changing the speed and pressure diagrams. The flaps adjust the quality of the separation. Grain was classified into three fractions. The first fraction is light grains with a density of 1000-1100 kg / m3. The second fraction - medium grains with a density of 1101-1200 kg / m3. The third fraction is heavy with a density greater than 1200 kg / m3. Grain was classified by dividers at the outlet of the pneumatic duct. Experimental researches confirmed expedience of the use of pulsator by setting of him in a pneumatic channel for replacement of swaying motion of sounding board on a pulsating blast. The analysis of existing types of grain separators is carried out. The properties of the fluidized bed and the individual grain are correlated with the design, kinematic and aerodynamic parameters of the separator, with the following factors: random force of frontal force; the presence of ripple air flow; excess and asymmetry of pressure plots, respectively, in the transverse and longitudinal sections of the pneumatic channel; the height of the layer dividers. The boundary modes of operation of the separator and the upper limit of its productivity are substantiated, provided that the maximum technological effect of separation is achieved. The experimental regularities of the influence of the basic geometric and kinematic parameters of the proposed separator on the technological parameters of its operation are presented.

Keywords

pneumatic pulse separator, density, grain, seeds, fluidized state, pulsating air flow, pulsator, technological separation effect

Full Text:

PDF

References

1. Ticz, Z.L. (1967). Mashiny dlya posleuborochnoy potochnoy obrabotki semyan. Teoriya i raschet mashin, tekhnologiya i avtomatizatsiya protsessov [ Machines for post-harvest continuous seed treatment. Theory and calculation of machines, technology and process automation]. Moscow: Vysshaya shkola [in Russian].

2. Kotov, B.I., Spirin, A.V., Tverdokhlib, I.V., Stepanenko, S.P. & Shvidya, V.O. (2017) Do pytannya pnevmohravitatsiynoyi separatsiyi zernovykh materialiv [On the issue of pneumogravity separation of grain materials] . Tekhnika, enerhetyka, transport APK – Engineering, energy, transportation of agroindustrial complex, 4, 51-55 [in Ukrainian].

3. Petrenko, M.M., Salo, V.M., Bohatyrov, D. V. & Skrynnik, I. O.(2013). Naukovotekhnolohichni osnovy ochysnoho ta sushylʹnoho zernovoho obladnannya, shcho pratsyuye v stani psevdozridzhennya [Scientific and technological bases of cleaning and drying grain equipment operating in the state of fluidization].Kirovohrad: SPD FOP Lysenko VF [in Ukrainian].

4. Nesterenko, A.V., Leshchenko, S.N., Petrenko, D.I., Bohatyrov, D.V. & Kyslun O.A. (2013) Teoreticheskoye obosnovaniye kachestvennykh pokazateley protsessa pnevmoseparatsii dlya mnogourovnevogo vvedeniya zerna [The theoretical justification of air separation process quality factors for the multilevel grain introduction]. Motrol. Commission of motorization and energetics in agriculture, Vol.15, No. 2, 93–98 [in Russian].

5. Nesterenko, O.V., Leshchenko, S.M. & Petrenko, D.I. (2015). Doslidzhennya nerivnomirnosti povitryanoho potoku v pnevmoseparuyuchomu kanali pry bahatorivnevomu vvedeni zerna [Investigation of nonuniformity of air flow in the pneumosupply channel at multilevel grain introduction]. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskohohospodarstva imeni Petra Vasylenka «Mekhanizatsiia silskohospodarskoho vyrobnytstva» – Bulletin of Kharkiv National Technical University of Agriculture named after Petro Vasylenko "Mechanization of agricultural production", 156, 35-42 [in Ukrainian].

6. Nesterenko, O. V., Leshchenko, S. M., Vasylkovskyi, O. M. & Petrenko, D. I. (2017). Analytical assessment of the pneumatic separation quality in the process of grain multilayer feeding. INMATEH - Agricultural Engineering, Vol. 53, No.3, 65-70 [in English].

7. Kotov, B.I. & Stepanenko, S.P. (2016). Zakonomirnosti rukhu chastynok v pnevmohravitatsiinomu separatori pry zminnii shvydkosti horyzontalnoho povitrianoho potoku [Patterns of motion of particles in the pneumogravity separator at variable speed of horizontal air flow]. Silskohospodarski mashyny – Agricultural machinery, 35, 40-45. [in Ukrainian].

8. Bakum, M.V., Krehot, M.M & Abduyev, M.M. (2017). Do obgruntuvannya efektyvnosti vykorystannya pnevmatychnoho separatora z nakhylenym povitryanym kanalom dlya poperednʹoyi separatsiyi nasinnyevykh sumishey petrushky [To substantiate the effectiveness of using a pneumatic separator with an inclined air channel for the preliminary separation of seed mixtures of parsley.]. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskohohospodarstva imeni Petra Vasylenka «Mekhanizatsiia silskohospodarskoho vyrobnytstva» – Bulletin of Kharkiv National Technical University of Agriculture named after Petro Vasylenko "Mechanization of agricultural production", 103, 267-274 [in Ukrainian].

9. Blekhman, I.I., Gortinskij, V.V. & Ptushkina, G.E. (1963). Dvizhenie chasticzy` v koleblyushhejsya srede pri nalichii soprotivleniya tipa sukhogo treniya [Particle motion in an oscillating medium in the presence of resistance like dry friction]. Izvestiya AN SSSR (mekhanika i mashinostroenie) – Izvestiya AN SSSR (mechanics and mechanical engineering), 4, 32-38 [in Russian].

10. Ginzburg, I.P. (1966). Aerogazodinamika [Aerogasdynamics]. Moscow: Vysshaya shkola [in Russian]

11. Blokhin, P.V. (1974). Ae`rogravitaczionny`j transport [Air Gravity Transport ]. Moscow: Kolos [in Russian].

12. Idel'chik, I.Ye. (1983). Aerodinamika tekhnologicheskikh apparatov [Aerodynamics of technological devices]. Moscow: Mechanical Engineering [in Russian].

13. Bohatyrov, D.V. & Petrenko, M.M. (2005). Eksperymentalʹni doslidzhennya pnevmoimpulʹsnoyi separatsiyi za hustynoyu [Experimental studies of pneumo-pulse separation by density]. Visnyk TDTU – Bulletin of TDTU, 1, 23-34 [in Ukrainian].

GOST Style Citations

  1. Машины для послеуборочной поточной обработки семян. Теория и расчет машин, технология и автоматизация процессов / За ред. З.Л. Тица. М.: Машиностроение, 1967. 447 с.
  2. До питання пневмогравітаційної сепарації зернових матеріалів / Котов Б.І. та ін. Техніка, енергетика, транспорт АПК. 2017. № 4. С. 51-55.
  3. Петренко М.М., Сало В.М., Богатирьов Д. В., Скриннік І. О. Науково-технологічні основи очисного та сушильного зернового обладнання, що працює в стані псевдозрідження . Кіровоград: СПД ФОП Лисенко В.Ф., 2013. 212 с.
  4. Нестеренко А.В., Лещенко С.Н., Петренко Д.И., Богатырев Д.В., Кислун О.А. Теоретическое обоснование качественных показателей процесса пневмосепарации для многоуровневого введения зерна. Motrol. Commission of motorization and energetics in agriculture . 2013, Vol.15, No. 2, С.93–98.
  5. Нестеренко О. В., Лещенко С. М., Петренко Д. І. Дослідження нерівномірності повітряного потоку в пневмосепаруючому каналі при багаторівневому введені зерна. Вісник Харківського національного технічного університету сільськогогосподарства імені Петра Василенка «Механізація сільськогосподарського виробництва». 2015. Вип. 156. С. 35-42.
  6. Nesterenko O. V., Leshchenko S. M., Vasylkovskyi O. M., Petrenko D. I. Analytical assessment of the pneumatic separation quality in the process of grain multilayer feeding. INMATEH - Agricultural Engineering. 2017. Vol. 53, No.3. С. 65-70.
  7. Котов Б.І., Степаненко С.П. Закономірності руху частинок в пневмогравітаційному сепараторі при змінній швидкості горизонтального повітряного потоку. Сільськогосподарські машини. 2016. Вип. 35. С. 40-45.
  8. Бакум М.В., Крехот М.М., Абдуєв М.М. До обґрунтування ефективності використання пневматичного сепаратора з нахиленим повітряним каналом для попередньої сепарації насіннєвих сумішей петрушки. Вісник ХНТУСГ. 2010, 103, С. 267-274.
  9. Блехман И.И., Гортинский В.В., Птушкина Г.Е. Движение частицы в колеблющейся среде при наличии сопротивления типа сухого трения. Известия АН СССР (механика и машиностроение). 1963. Вып. 4. С.32-38.
  10. Блохин П.В. Аэрогравитационный транспорт. М.: Колос. 1974. 120 с.
  11. Гинзбург И.П. Аэрогазодинамика. М.: Высшая школа. 1966. 406 с.
  12. Идельчик И.Е. Аэродинамика технологических аппаратов. М.: Машиностроение, 1983. С. 278-281.
  13. Богатирьов Д.В., Петренко М.М. Експериментальні дослідження пневмоімпульсної сепарації за густиною. Вісник ТДТУ. 2005. Вип. 1. С. 23-34.
    Copyright (c) 2019 Dmytro Bohatyrov, Ivan Skrynnik, Oksana Yurchenko