DOI: https://doi.org/10.32515/2414-3820.2019.49.83-92
Improvement of Accuracy of Measurement of Power Parameters at Diagnostics of Brake Systems of Cars
About the Authors
Viktor Dubovyk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine
Yurii Nevdakha, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine
Ivan Vasylenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine
Dmytro Bohatyrov, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine
Abstract
Modern stands with jogging drums in the control of the brake system of the car do not always give an objective assessment of its technical condition, due to the large errors in the measurement of the power parameters that characterize the brake efficiency and stability of the car during braking. A considerable amount of research is devoted to the development of dynamic models of the car's braking system. In this case, the issues of relative positioning of the axles of the car and the stand are almost not considered, and this leads to a decrease in the accuracy of determination of braking forces at diagnosis. This explains the large differences in the values of the braking forces when tested in bench and road conditions. Therefore, the purpose of the article is to improve the accuracy of measurement of power parameters in the diagnosis of brake systems of cars.
For analytical research, the car is presented as a vibrating system with a sprung mass in the form of a solid body, which has three degrees of freedom. The suspension of the car is presented in the form of parallel working elastic elements and dampers. The model does not take into account the effect of lateral forces on the car. Particular attention is paid to the process of interaction of wheels with the running drums of the stand in the longitudinal direction. The model assumes the following assumptions: in the process of calculations simulated the braking of not all axles of the car, but only one; the body of the car is a solid body, the mass of which affects the brake axle of the car; unbalance and gyroscopic moments of rotating masses of the car are zero; points of contact of tires with the reference surface are taken in the middle of the tire imprints on the support rollers of the stand. non-parallelism. This addition to the dynamic model significantly clarifies the calculations of the process of braking the car wheel on the brake stand with treadmill.
The developed dynamic model allows to simulate the process of braking the car with the parallelism of its diagonal axis relative to the axis of the stand, and to determine the dependence of the accuracy of measurement of power parameters on the magnitude of the angle of their mutual non-parallelism. This addition to the dynamic model substantially clarifies the calculations of the process of braking the car wheel on the brake stand with treadmill.
Keywords
brake system, brake stand, diagnosis, power parameters, braking force, dynamic model, wheel
Full Text:
PDF
References
1. Ludchenko, O.A. (2004). Tekhnichne obsluhovuvannia i remont avtomobiliv: orhanizatsiia i upravlinnia: [Car maintenance and repair: organization and management]. Kyiv: Znannia [in Ukrainian].
2. Ludchenko, O.A. (2007). Tekhnichna ekspluatatsiia i obsluhovuvannia avtomobiliv: Tekhnolohiia [Car Maintenance and Maintenance: Technology]. Kyiv, Vyshchashkola [in Ukraine].
3. Kartashevych, A.N. (2011). Dyahnostyrovanye avtomobylei [Cardiagnostics]. Praktykum. Mynsk: Novoeznanye; Moskow: YNFRA-M [in Russian].
4. Biletskyi, V.O. (2002). Problemy kontroliu pokaznykiv efektyvnosti halmuvannia DTZ ta metody yikhnoho vyrishennia. [Problems of controlling the performance of road accident braking performance and methods forsolving them] . Avtoshliakhovyk Ukrainy – Road car of Ukraine, №4, 13-16 [in Ukraine].
5. Henbom, B.B. (1974). Voprosy dynamyky tormozhenyia y teoryy rabochykh protsessov tormoznikh system avtomobylei. [Questions of braking dynamics and the theory working processes of brake systems of cars]. Lvov, Vyshchashkola [in Russian].
6. Hredeskul, A.B. (1963). Dynamyka tormozhenyia avtomobylia. [Car braking dynamics]: Doctor's thesis. Kharkov [in Russian].
7. Yllaryonov, V.A. & Pchelyn, Y.K. (1979). Prostranstvennaia matematycheskaia model dlia yssledovanyia aktyvnoi bezopasnosty avtomobylia. [Spatial mathematical model for the study of activevehiclesafety]. Sb. nauch. tr. «Yssledovanye tormozhenyia avtomobylia y raboty pnevmatycheskykh shyn». Omsk: SybADY [in Russian].
8. Smyrnov, H.A. (1990). Teoryia dvyzhenyia kolesnykh mashyn. [Theory of movement of wheel edvehicles]. Moskow: Mashynostroenye [in Russian].
9. Topalydy, V.A. (2003). O dostovernosty еkspluatatsyonnoh okontrolia tormoznykh svoistv ATS. [On the reliability of operational control the braking properties of ATS]. Avtomobylnaia promyshlennost – Automotive industry, №1, 2003 [in Russian].
10. Fedotov, A.Y. & Bykov, A.V. (2001). Еksperymentalnoe yssledovanye dynamycheskykh kharakterystyk protsessa tormozhenyia avtopoezda. [An experimental study of the dynamic characteristics of the braking process of the road train]. Mezhvuzovskyi sbornyk nauchn. trudov «Povyshenye kachestva y nadezhnosty transportnykh y tekhnolohycheskykh mashyn» . Khabarovsk: KhHTU [in Russian].
GOST Style Citations
- Лудченко О.А. Технічне обслуговування і ремонт автомобілів: організація і управління: підручник. Київ: Знання, 2004. 478 с.
- Лудченко О.А. Технічна експлуатація і обслуговування автомобілів: Технологія: підручник. Київ, Вища школа, 2007. 527 с.
- Карташевич А.Н. Диагностирование автомобилей. Практикум : учеб. пособие / под ред. А.Н. Карташевича. Минск: Новоезнание; Москва: ИНФРА-М, 2011. 208 с.
- Білецький В.О. Проблеми контролю показників ефективності гальмування ДТЗ та методи їхнього вирішення. Автошляховик України. 2002. №4. С. 13-16.
- Генбом Б.Б. Вопросы динамики торможения и теории рабочих процессов тормозных систем автомобилей. Львов, Вища школа, 1974. 234 с.
- Гредескул А.Б. Динамика торможения автомобиля : Дис. ... д-ра техн. наук. Харьков, 1963. 271с.
- Илларионов В.А., Пчелин И.К. Пространственная математическая модель для исследования активной безопасности автомобиля. Исследование торможения автомобиля и работы пневматических шин: сб. науч. тр.. Омск: СибАДИ, 1979. С. 25-41.
- Смирнов Г.А. Теориядвиженияколесных машин: учебник для вузов. Москва: Машиностроение. 1990, С. 197-203.
- Топалиди В.А. О достоверности эксплуатационного контроля тормозных свойств АТС. Автомобильная промышленность. 2003. №1. С.3.
- Федотов А.И., Быков А.В. Экспериментальное исследование динамических характеристик процесса торможения автопоезда. Межвузовский сборник научн. трудов «Повышение качества и надежности транспортных и технологических машин» . Хабаровск: ХГТУ, 2001. С. 72-78.
Copyright (c) 2019 Viktor Dubovyk, Yurii Nevdakha, Ivan Vasylenko, Dmytro Bohatyrov
Improvement of Accuracy of Measurement of Power Parameters at Diagnostics of Brake Systems of Cars
About the Authors
Viktor Dubovyk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine
Yurii Nevdakha, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine
Ivan Vasylenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine
Dmytro Bohatyrov, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine
Abstract
Modern stands with jogging drums in the control of the brake system of the car do not always give an objective assessment of its technical condition, due to the large errors in the measurement of the power parameters that characterize the brake efficiency and stability of the car during braking. A considerable amount of research is devoted to the development of dynamic models of the car's braking system. In this case, the issues of relative positioning of the axles of the car and the stand are almost not considered, and this leads to a decrease in the accuracy of determination of braking forces at diagnosis. This explains the large differences in the values of the braking forces when tested in bench and road conditions. Therefore, the purpose of the article is to improve the accuracy of measurement of power parameters in the diagnosis of brake systems of cars. For analytical research, the car is presented as a vibrating system with a sprung mass in the form of a solid body, which has three degrees of freedom. The suspension of the car is presented in the form of parallel working elastic elements and dampers. The model does not take into account the effect of lateral forces on the car. Particular attention is paid to the process of interaction of wheels with the running drums of the stand in the longitudinal direction. The model assumes the following assumptions: in the process of calculations simulated the braking of not all axles of the car, but only one; the body of the car is a solid body, the mass of which affects the brake axle of the car; unbalance and gyroscopic moments of rotating masses of the car are zero; points of contact of tires with the reference surface are taken in the middle of the tire imprints on the support rollers of the stand. non-parallelism. This addition to the dynamic model significantly clarifies the calculations of the process of braking the car wheel on the brake stand with treadmill. The developed dynamic model allows to simulate the process of braking the car with the parallelism of its diagonal axis relative to the axis of the stand, and to determine the dependence of the accuracy of measurement of power parameters on the magnitude of the angle of their mutual non-parallelism. This addition to the dynamic model substantially clarifies the calculations of the process of braking the car wheel on the brake stand with treadmill.Keywords
Full Text:
PDFReferences
1. Ludchenko, O.A. (2004). Tekhnichne obsluhovuvannia i remont avtomobiliv: orhanizatsiia i upravlinnia: [Car maintenance and repair: organization and management]. Kyiv: Znannia [in Ukrainian].
2. Ludchenko, O.A. (2007). Tekhnichna ekspluatatsiia i obsluhovuvannia avtomobiliv: Tekhnolohiia [Car Maintenance and Maintenance: Technology]. Kyiv, Vyshchashkola [in Ukraine].
3. Kartashevych, A.N. (2011). Dyahnostyrovanye avtomobylei [Cardiagnostics]. Praktykum. Mynsk: Novoeznanye; Moskow: YNFRA-M [in Russian].
4. Biletskyi, V.O. (2002). Problemy kontroliu pokaznykiv efektyvnosti halmuvannia DTZ ta metody yikhnoho vyrishennia. [Problems of controlling the performance of road accident braking performance and methods forsolving them] . Avtoshliakhovyk Ukrainy – Road car of Ukraine, №4, 13-16 [in Ukraine].
5. Henbom, B.B. (1974). Voprosy dynamyky tormozhenyia y teoryy rabochykh protsessov tormoznikh system avtomobylei. [Questions of braking dynamics and the theory working processes of brake systems of cars]. Lvov, Vyshchashkola [in Russian].
6. Hredeskul, A.B. (1963). Dynamyka tormozhenyia avtomobylia. [Car braking dynamics]: Doctor's thesis. Kharkov [in Russian].
7. Yllaryonov, V.A. & Pchelyn, Y.K. (1979). Prostranstvennaia matematycheskaia model dlia yssledovanyia aktyvnoi bezopasnosty avtomobylia. [Spatial mathematical model for the study of activevehiclesafety]. Sb. nauch. tr. «Yssledovanye tormozhenyia avtomobylia y raboty pnevmatycheskykh shyn». Omsk: SybADY [in Russian].
8. Smyrnov, H.A. (1990). Teoryia dvyzhenyia kolesnykh mashyn. [Theory of movement of wheel edvehicles]. Moskow: Mashynostroenye [in Russian].
9. Topalydy, V.A. (2003). O dostovernosty еkspluatatsyonnoh okontrolia tormoznykh svoistv ATS. [On the reliability of operational control the braking properties of ATS]. Avtomobylnaia promyshlennost – Automotive industry, №1, 2003 [in Russian].
10. Fedotov, A.Y. & Bykov, A.V. (2001). Еksperymentalnoe yssledovanye dynamycheskykh kharakterystyk protsessa tormozhenyia avtopoezda. [An experimental study of the dynamic characteristics of the braking process of the road train]. Mezhvuzovskyi sbornyk nauchn. trudov «Povyshenye kachestva y nadezhnosty transportnykh y tekhnolohycheskykh mashyn» . Khabarovsk: KhHTU [in Russian].
GOST Style Citations
- Лудченко О.А. Технічне обслуговування і ремонт автомобілів: організація і управління: підручник. Київ: Знання, 2004. 478 с.
- Лудченко О.А. Технічна експлуатація і обслуговування автомобілів: Технологія: підручник. Київ, Вища школа, 2007. 527 с.
- Карташевич А.Н. Диагностирование автомобилей. Практикум : учеб. пособие / под ред. А.Н. Карташевича. Минск: Новоезнание; Москва: ИНФРА-М, 2011. 208 с.
- Білецький В.О. Проблеми контролю показників ефективності гальмування ДТЗ та методи їхнього вирішення. Автошляховик України. 2002. №4. С. 13-16.
- Генбом Б.Б. Вопросы динамики торможения и теории рабочих процессов тормозных систем автомобилей. Львов, Вища школа, 1974. 234 с.
- Гредескул А.Б. Динамика торможения автомобиля : Дис. ... д-ра техн. наук. Харьков, 1963. 271с.
- Илларионов В.А., Пчелин И.К. Пространственная математическая модель для исследования активной безопасности автомобиля. Исследование торможения автомобиля и работы пневматических шин: сб. науч. тр.. Омск: СибАДИ, 1979. С. 25-41.
- Смирнов Г.А. Теориядвиженияколесных машин: учебник для вузов. Москва: Машиностроение. 1990, С. 197-203.
- Топалиди В.А. О достоверности эксплуатационного контроля тормозных свойств АТС. Автомобильная промышленность. 2003. №1. С.3.
- Федотов А.И., Быков А.В. Экспериментальное исследование динамических характеристик процесса торможения автопоезда. Межвузовский сборник научн. трудов «Повышение качества и надежности транспортных и технологических машин» . Хабаровск: ХГТУ, 2001. С. 72-78.