DOI: https://doi.org/10.32515/2414-3820.2019.49.154-160

Restoration of Sliding Bearing Units With Polyamide–epoxy Composite Materials

Leonid Malai, Vladimir Gorobet, Angela Popescul

About the Authors

Leonid Malai, Associate Professor, PhD in Technics (Candidate of Technics Sciences), State Agrarian University of Moldova, Chisinau, Moldova

Vladimir Gorobet, Associate Professor, PhD in Technics (Candidate of Technics Sciences), State Agrarian University of Moldova, Chisinau, Moldova

Angela Popescul, Associate Professor, PhD in Technics (Candidate of Technics Sciences), State Agrarian University of Moldova, Chisinau, Moldova

Abstract

The reliability, productivity and competitiveness of agricultural machinery, as well as related industries, is largely determined by the resource of sliding bearing units, which during operation are influenced by many adverse factors such as: high dust content, bad weather, temperature fluctuations, high humidity, aggressive medium, uneven loads, mechanical shocks, vibrations and shock loads, insufficient lubrication, etc. Therefore, the development and implementation of new materials for the restoration of sliding bearing units capable of working in such conditions is quite relevant and is of interest to science and practice in the field of technical service of agricultural machinery. Tribological tests were carried out on a universal tribometer UMT–2 using a special module for the pin–disk friction pairs. Visualization and recording of research results were carried out using a special program. The deviation of the location of the corresponding surfaces does not exceed 25% of the size tolerance of the corresponding surfaces. The studies were carried out under the following conditions: pressure 1 MPa, sliding speed 1,5 m/s, radius from the centre of the disk to the axis of sample 40 mm, Litol 24 was used as a lubricant. The proposed composite material as a matrix contains PA–12 polyamide (OST 6–05–425) – 70% and the epoxy oligomer P–EP.534 (TU 6–10–189–83) – 30%, and as fillers: molybdenum disulfide DM–1 (TU 48–19–133–90), hollow glass microspheres MS–VP gr. 5–4% and basalt fibre. The composite material was applied by hot pressing to one of the ends of the pins made of ordinary carbon steel without heat treatment. Studies on optimizing the composition of PECM were carried out using mathematical planning of experiments, namely, a 3–factor non–compositional plan of the Box–Benkin type. The obtained data were processed using the STATGRAPHICS program. An analysis of the equation shows that all factors contribute to a decrease in the coefficient of friction of the polyamide epoxy composition with steel (b1, b2 and b3, have negative values). Molybdenum disulfide, then glass microspheres and, finally, basalt microfiber (|b1|>|b2|>|b3|) most affects the coefficient of friction. The value of the optimal coefficient of friction (K=0,115). The values of these factors in coded coordinates are 5% – molybdenum disulfide, 23% – hollow glass microspheres and 4,31% – basalt microfiber from the composition. Based on the results of the studies, the following conclusions can be drawn: tribological monitoring of laboratory samples from composite polyamide–epoxy materials tested on carbon steel disks using LITOL lubricant showed a beneficial effect of all components of the composition on the friction coefficient; The results obtained made it possible to determine the optimal composition of PECM, at which the lowest coefficient of friction was achieved (K=0,115).

Keywords

basalts microfibres, friction coefficient, glass microspheres, moliybdenum disulfide, Polyamide PA12

Full Text:

PDF

References

1. Astahov, A.S., Buklagin, D.S. & Golubev, I.G. (1988). Primenenie tehnicheskoy keramiki v selskohozyaystvennom proizvodstve [Application of technical ceramics in agricultural production]. Moscow: Agropromizdat [in Russian].

2. Belousov, V.Ya. (1984). Dolgovechnost detaley mashin s kompozitsionnyimi materialami [Durability of machine parts with composite materials]. Lvov: Vyshcha shkola [in Russian].

3. Kislyiy, P.S., Bodnaruk, N.I. & Borovikov, M.S. (1985). Kermetyi. Kyiv: Naukova dumka [in Russian].

4. Novytskyi A.V., Novytskyi Yu.A. (2017). Tekhnichna otsinka spozhyvchykh yakostei silskohospodarskoi tekhniky [Technical assessment of consumer qualities of agricultural machinery]. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Seriia: tekhnika ta enerhetyka APK. Kyiv – Scientific Bulletin of the National University of Life and Environmental Sciences of Ukraine. Series: APC Engineering and Energy, 264, 293–303 [in Ukraine].

5. Chernovol, M.I., Zlatopolskiy, F.I. & Lopata, L.A. (1994). Sovremennyie materialyi dlya vosstanovleniya i uprochneniya detaley mashin [Modern materials for the restoration and hardening of machine parts]. Kirovograd [in Russian].

6. Malay, L. & Maryan, G. (2011). Vyibor i optimizatsiya sostava poliamida KM, ispolzuemogo dlya obnovleniya podshipnikov [Selection and optimization of the composition of KM polyamide used to update bearings]. Agrarnaya nauka –Agrarian Science, 2, 50-53 [in Russian].

7. Vasylkovskyi, O.M., Leshchenko, S.M., Vasylkovska, K.V. & Petrenko, D.I. (2016). Pidruchnyk doslidnyka [Researcher's textbook]. Kirovohrad, Kharkiv: Machulin [in Ukraine].

8. Douglas, C. Montgomery and George C. Runge.r (2010). Applied Statistics and Probability for Engineers. 5th edition. John Wiley and Sons, New York.

9. Pen, R.Z. (2015). Planirovanie eksperimenta v Statgraphics Centurion [Planning an experiment at Statgraphics Centurion]. Mezhdunarodnyiy zhurnal eksperimentalnogo obrazovaniya – International Journal of Experimental Education, 10-2, 160-161. expeducation.ru. Retrieved from http://expeducation.ru/ru/article/view?id=8573 [in Russian].

10. Site of «Journal of Statistical Education (JSE)». www.amstat.org. Retrieved from http://www.amstat.org/publications/jse/jse_data_archive.htm.7

GOST Style Citations

  1. Астахов А.С., Буклагин Д.С., Голубев И.Г. Применение технической керамики в сельскохозяйственном производстве. Москва: Агропромиздат. 1988. 64 с.
  2. Белоусов В.Я. Долговечность деталей машин с композиционными материалами. Львов: Вища школа, 1984. 180 с.
  3. Кислый П.С., Боднарук Н.И., Боровиков М.С. Керметы. Київ: Наукова думка. 1985. 272 с.
  4. Новицький А.В., Новицький Ю.А. Технічна оцінка споживчих якостей сільськогосподарської техніки. Науковий вісник Національного університету біоресурсів і природокористування України. Серія: техніка та енергетика АПК. 2017. Вип. 264. С. 293–303.
  5. Черновол М.И., Златопольский Ф.И., Лопата Л.А. Современные материалы для восстановления и упрочнения деталей машин. Кировоград. 1994. 83 с.
  6. Малай Л., Марян Г. Выбор и оптимизация состава полиамида КМ, используемого для обновления подшипников. Аграрная наука. 2011. №2. С. 50–53.
  7. Підручник дослідника / О.М. Васильковський,С.М. Лещенко, К.В. Васильковська, Д.І. Петренко. Навчальний посібник для студентів агротехнічних спеціальностей. Кіровоград, Харків: Мачулін, 2016. 204 с.
  8. Douglas C. Montgomery and George C. Runge.r (2010). Applied Statistics and Probability for Engineers. 5th edition. John Wiley and Sons, New York.
  9. Пен Р.З. Планирование эксперимента в Statgraphics Centurion. Международный журнал экспериментального образования. 2015. № 10-2. С. 160-161. URL: http://expeducation.ru/ru/article/view?id=8573 (дата обращения: 10.09.2019).
  10. Journal of Statistical Education (JSE). URL: http://www.amstat.org/publications/jse/jse_data_archive.htm (дата обращения: 11.09.2019).
Copyright (c) 2019 Leonid Malai, Vladimir Gorobet, Angela Popescul