DOI: https://doi.org/10.32515/2414-3820.2020.50.151-158

Before Calculating the Teeth of Spur gears on the Bend

Yurii Nevdakha, Viktor Dubovyk, Nataliia Nevdakha, Fedir Zlatopolskiy

About the Authors

Yurii Nevdakha, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: uanevdakha@ukr.net, ORCID ID: 0000-0003-4355-4065

Viktor Dubovyk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID ID: 0000-0002-0372-1108

Nataliia Nevdakha, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine

Fedir Zlatopolskiy, Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID ID: 0000-0002-2994-9573

Abstract

The aim of the work is to improve the calculations of spur cylindrical wheels per bend, due to the fact that the existing formulas do not give the actual value of the maximum stress, and the diagram does not correspond to the real law of stress distribution. In order to obtain satisfactory results, it is more correct to calculate the teeth at the maximum local stress. Combining the coefficients and substantiating the calculated dependence to determine the value of the coefficient of the shape of the tooth under load, applied at any point of the working profile of the tooth, to obtain formulas for the bending strength of the teeth of the gear and wheel. When calculating the bending teeth, the calculation is based on the stresses arising at the base of the tooth, under the load applied at the top of the tooth. Consider first the most common calculation scheme. Dangerous section of the tooth as seen from the plot of total stresses indicates that the maximum normal stress occurs on the non-working side of the tooth - the compression side, however, since fatigue cracks occur at the base of the tooth on the stretching side, the calculation is based on tensile stress on the working side. The hypothesis of non-curvature of flat sections is unfair for short beams of variable cross section, so the total diagram does not correspond to the real law of stress distribution. But at the base of the tooth near the transition curve is the place of stress concentration. The actual dangerous cross-section lies below the cross-section of the depression, this is confirmed by the fact that the fatigue cracks form an angle with the load curve close to straight, and the fracture of the tooth has a convex shape. In this case, it is more correct to calculate the teeth at the maximum local stress. Combining the coefficients obtained a calculated dependence to determine the value of the coefficient of the shape of the tooth under load, applied at any point of the working profile of the tooth. As a result of the study it was found that the coefficient of tooth shape decreases with increasing number of teeth. This result was expected because as the number of teeth increases, the angle between the teeth decreases, and neighboring teeth perceive part of the stress that occurs in the loaded tooth. The formulas for checking the bending strength of gear teeth and wheels are obtained. The above refinement calculations of the teeth on the bend reflect the beneficial effect of improving the accuracy of the manufacture of teeth.

Keywords

gears, prong, fracture, dangerous cross section, stress, bending, load, effort

Full Text:

PDF

References

1. Pavlysche, V.T. (1993). Osnovy konstruiuvannia ta rozrakhunok detalej mashyn [Fundamentals of design and calculation of machine parts]. Kyiv: Vyscha shkola [in Ukrainian].

2. Reshetov, L.N. (1989). Machine parts. (4-th ed.). Moskow: Mashinostroenie [in Russian].

3. Guzenkov, P.G. (1982). Detali mashin [Machine parts]. Moskow: Vysshaja shkola [in Russian].

4. Berezovskij, Ju.N., Chernilevskij, D.V. & Petrov, M.S. (1983). Detali mashin [Machine parts]. Moskow: Mashinostroenie [in Russian].

5. Ivanov, M.N. & Ivanov, V.N. (1975). Detali mashin: Kursovoe proektirovanie [Machine parts: Course design]. Moskow: Vysshaja shkola [in Russian].

6. Kirkach, N.F. & Balasanjan, R.A. (1987). Raschet i proektirovanie detalej mashin [Calculation and design of machine parts]. (Issue 1). Har'kov. Vishha shkola. [in Russian].

7. Dobrovol'skij, V.A. (1954). Detali mashin: uchebnoe posobie dlja tehnicheskih vysshih uchebnyh zavedenij USSR. Kiev: Gosudarstvennoe izdatel'stvo tehnicheskoj literatury USSR [in Russian].

8. Marhel', I.I. (1986). Machine parts. Programmed study guide for secondary specialized institutions. (2d ed.). Moskow: Mashinostroenie [in Russian].

Citations

  1. Павлище В.Т. Основи конструювання та розрахунок деталей машин. К.: «Вища школа», 1993. 356 с.
  2. Решетов Л.Н. Детали машин: Учебник для студентов Машиностроительных и механических специальности вузов. 4-е изд., перераб. и дон. М.: Машиностроение, 1989. 496 с.
  3. Гузенков П.Г. Детали машин: учебник для студ. высш. технических учебных заведений.М.: Высшая школа, 1982. 351 с.
  4. Березовский Ю.Н., Чернилевский Д.В., Петров М.С. Детали машин: учебник для машиностроительных техникумов. М.:Машиностроение, 1983. 384 с.
  5. Иванов М.Н., Иванов В.Н. Детали машин: Курсовое проектирование . М.: Высшая школа, 1975. 551 с.
  6. Киркач Н.Ф., Баласанян Р.А. Расчет и проектирование деталей машин. Часть 1. Харьков. Вища школа, 1987. 336 с.
  7. Добровольский В.А. Детали машин: учебное пособие для технических высших учебных заведений УССР. К.: Государственное издательство технической литературы УССР, 1954. 599 с.
  8. Мархель И.И. Детали машин. Программированное учебное пособие для средних специальных заведений.- 2-е изд., перераб. и доп. М.: Машиностроение, 1986. 448 с.
Copyright (c) 2020 Yurii Nevdakha, Viktor Dubovyk, Nataliia Nevdakha, Fedir Zlatopolskiy