DOI: https://doi.org/10.32515/2414-3820.2021.51.216-226

A Method of Encrypting the Traffic of Quadrocopters Through an Analog Path During Monitoring of Agricultural Ground Objects

Yelyzaveta Meleshko, Oleksandr Maidanyk, Oleksandr Sobinov, Roman Mynailenko

About the Authors

Yelyzaveta Meleshko, Professor, Doctor in Technics (Doctor of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: elismeleshko@gmail.com, ORCID ID: 0000-0001-8791-0063

Oleksandr Maidanyk, Master student, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: maidanyksmail@gmail.com

Oleksandr Sobinov, Lecturer, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: sagcob14@gmail.com, ORCID ID: 0000-0002-9465-4990

Roman Mynailenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: aron70@ukr.net, ORCID ID: 0000-0002-3783-0476

Abstract

The purpose of this work to developed a method for encrypting the traffic of quadcopters through an analog path throughout the monitoring of agricultural ground objects. The use of unmanned aerial vehicles of a quadrocopter type for monitoring ground objects in agriculture is becoming more and more common practice and allows you to effectively solve a wide range of tasks. Technologically equipped drones in agriculture are capable of performing various monitoring operations, in particular: aerial photography, video filming, thermal filming, laser scanning, etc. Such monitoring makes it possible to assess the quality of crops and identify the fact of damage or death of crops, identify crop defects and problem areas, analyze the effectiveness of plant protection measures, check compliance with crop rotation plans, identify deviations and violations in the process of agrotechnical work, analyze the relief and create maps, conduct audit and inventory of land, carry out security measures and collect information for the security service, etc. At the same time, drones are vulnerable to information attacks, which can be carried out for different purposes, in particular, to steal a drone, use it in a network of bots to attack other devices, or to intercept information that it collects for a device operator. All this necessitates the development of effective methods of information protection of drones from cyberattacks. In this work, the Vernam cipher was used to encrypt the data, and a pseudo-random sequence generated using the Sinai mathematical billiard was used as the encryption key. Thus, an improved mathematical model for generating encryption keys based on the Sinai billiards has been proposed. On the basis of the proposed mathematical model, software was developed and working models of devices for conducting experiments were created. To create a layout, a module based on the STM32F103C8T6 microcontroller was selected, data between devices was transmitted via a radio module.

Keywords

encryption, key generation, traffic, quadcopter, analog path, monitoring, agricultural ground objects

Full Text:

PDF

References

1. Agarwal A., Shukla V., Singh R., Gehlot A., Garg V. (2018). “Design and Development of Air and Water Pollution Quality Monitoring Using IoT and Quadcopter”, In: Singh R., Choudhury S., Gehlot A. (eds) Intelligent Communication, Control and Devices, Advances in Intelligent Systems and Computing, Vol. 624, Springer, Singapore, DOI: https://doi.org/10.1007/978-981-10-5903-2_49 [in English].

2. “Unmanned aerial vehicles in agriculture” (2019), Website of the Company "GEOMIR", Modern technologies for agribusiness. www.geomir.ru. Retrieved from https://www.geomir.ru/publikatsii/bespilotniki-v-selskom-khozyaystve/ [in Russian]

3. Duggal V., Sukhwani M., Bipin K., Reddy G.S., Krishna K.M. (2016). “Plantation monitoring and yield estimation using autonomous quadcopter for precision agriculture”, IEEE International Conference on Robotics and Automation (ICRA), pp. 5121-5127, doi: 10.1109/ICRA.2016.7487716. ieeexplore.ieee.org. Retrieved from https://ieeexplore.ieee.org/abstract/document/7487716 [in English].

4. Zubarev Ju.N., Fomin D.S., Chashhin A.N., Zabolotnova M.V. (2019). “The use of unmanned aerial vehicles in agriculture”, Bulletin of the Perm Federal Research Center, №2. cyberleninka.ru. Retrieved from https://cyberleninka.ru/article/n/ispolzovanie-bespilotnyh-letatelnyh-apparatov-v-selskom-hozyai-stve [in Russian].

5. Glavnoe o bezopasnosti dronov. Veb-sajt firmy «Laboratorija Kasperskogo» [The main thing about the safety of drones. Website of Kaspersky Lab]. www.kaspersky.ru. Retrieved from https://www.kaspersky.ru/resource-center/threats/can-drones-be-hacked

6. Eastlake, D.E., Schiller, J.I., & Crocker, S. (2005). Randomness Requirements for Security. RFC, 4086, 1-48 [in English].

7. Barker, E. and Kelsey, J. (2015). Recommendation for Random Number Generation Using Deterministic Random Bit Generators, Special Publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://doi.org/10.6028/NIST.SP.800-90Ar1 (Accessed November 29, 2021) [in English].

8. Sinai, Y.G. (1970). Dynamical systems with elastic reflections . Russian Mathematical Surveys, Vol. 25, 2, 137-189. [in English].

9. Ganapol'skij, E.M. (2012). O prirode kvantovogo haosa v rasseivajushhej bil'jardnoj K-sisteme [On the nature of quantum chaos in a scattering billiard K-system]. Dopovidi Nacіonal'noї akademії nauk Ukraїni – Reports of the National Academy of Sciences of Ukraine.]. 2012. № 3. S. 85-91.

10. Sobinov, O.H. (2014). Prostyj henerator psevdovypadkovoi poslidovnosti [A simple pseudo-random sequence generator]. Information technology and computer engineering: naukovo-praktychna konferensia. (4 hrud. 2014 r.) – Scintific and Practical Conference. (pp. 184). Kirovohrad: KNTU [in Ukrainian].

11. STM32CubeIDE . www.st.com. Retrieved from https://www.st.com/en/development-tools/stm32cubeide.html. [in English].

12. STM32F103C8 . www.st.com. Retrieved from https://www.st.com/en/microcontrollers-microprocessors /stm32f103c8.html [in English].

13. JDY-40 2.4G wireless serial port transmission transceiver and remote communication module . sunhokey.cn. Retrieved from https://sunhokey.cn/collections/wifi-module/products/jdy-40-2-4g-wireless-serial-port-transmission-transceiver-and-remote-communication-module [in English].

14. GPIO internal peripheral . wiki.st.com. Retrieved from https://wiki.st.com/stm32mpu/wiki /GPIO_internal_peripheral [in English].

15. AN2582 Application note . read.pudn.com. Retrieved from http://read.pudn.com/downloads106/sourcecode /embed/437624/stm32/STM32F Documents/Application Note/STM32F10xxx USART application examples.pdf [in English].

16. Nested Vectored Interrupt Controller (NVIC) . infocenter.arm.com. Retrieved from http://infocenter.arm.com/help /index.jsp?topic=/com.arm.doc.dai0179b/ar01s01s01.html [in English].

Citations

  1. Agarwal A., Shukla V., Singh R., Gehlot A., Garg V. (2018), “Design and Development of Air and Water Pollution Quality Monitoring Using IoT and Quadcopter”, In: Singh R., Choudhury S., Gehlot A. (eds) Intelligent Communication, Control and Devices, Advances in Intelligent Systems and Computing, Vol. 624, Springer, Singapore, DOI: https://doi.org/10.1007/978-981-10-5903-2_49
  2. “Unmanned aerial vehicles in agriculture” (2019), Website of the Company "GEOMIR", Modern technologies for agribusiness, URL: https://www.geomir.ru/publikatsii/bespilotniki-v-selskom-khozyaystve/ (in Russian)
  3. Duggal V., Sukhwani M., Bipin K., Reddy G.S., Krishna K.M. (2016) “Plantation monitoring and yield estimation using autonomous quadcopter for precision agriculture”, IEEE International Conference on Robotics and Automation (ICRA), pp. 5121-5127, doi: 10.1109/ICRA.2016.7487716, URL:https://ieeexplore.ieee.org/abstract/document/7487716
  4. Zubarev Ju.N., Fomin D.S., Chashhin A.N., Zabolotnova M.V. (2019), “The use of unmanned aerial vehicles in agriculture”, Bulletin of the Perm Federal Research Center, №2. URL: https://cyberleninka.ru/article/n/ispolzovanie-bespilotnyh-letatelnyh-apparatov-v-selskom-hozyai-stve (in Russian)
  5. Главное о безопасности дронов. Веб-сайт фирмы «Лаборатория Касперского». URL: https://www.kaspersky.ru/resource-center/threats/can-drones-be-hacked (дата обращения: 27.10.2021)
  6. Eastlake, D.E., Schiller, J.I., & Crocker, S. (2005). Randomness Requirements for Security. RFC, 4086, 1-48.
  7. Barker, E. and Kelsey, J. (2015), Recommendation for Random Number Generation Using Deterministic Random Bit Generators, Special Publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://doi.org/10.6028/NIST.SP.800-90Ar1 (Accessed November 29, 2021)
  8. Sinai Y.G. Dynamical systems with elastic reflections . Russian Mathematical Surveys.1970. Vol. 25, no. 2. Pp. 137-189.
  9. Ганапольский Е.М. О природе квантового хаоса в рассеивающей бильярдной К-системе . Доповiдi Національної академії наук України. 2012. № 3. С. 85-91.
  10. Собінов О.Г. Простий генератор псевдовипадкової послідовності . Інформаційні технології та комп’ютерна інженерія: зб. тез доп. наук.-практ. конф., м. Кіровоград, 4 груд. 2014 р. Кіровоград: КНТУ, 2014. С. 184.
  11. STM32CubeIDE. URL: https://www.st.com/en/development-tools/stm32cubeide.html.
  12. STM32F103C8 . URL: https://www.st.com/en/microcontrollers-microprocessors/stm32f103c8.html.
  13. JDY-40 2.4G wireless serial port transmission transceiver and remote communication module . URL: https://sunhokey.cn/collections/wifi-module/products/jdy-40-2-4g-wireless-serial-port-transmission-transceiver-and-remote-communication-module.
  14. GPIO internal peripheral . URL: https://wiki.st.com/stm32mpu/wiki/GPIO_internal_peripheral.
  15. AN2582 Application note. URL: http://read.pudn.com/downloads106/sourcecode/embed/ 437624/stm32/STM32F Documents/Application Note/STM32F10xxx USART application examples.pdf.
  16. Nested Vectored Interrupt Controller (NVIC) . URL: http://infocenter.arm.com/help/index.jsp?topic= /com.arm.doc.dai0179b/ar01s01s01.html
Copyright (c) 2021 Yelyzaveta Meleshko, Oleksandr Maidanyk, Oleksandr Sobinov, Roman Mynailenko