DOI: https://doi.org/10.32515/2414-3820.2021.51.188-194

Overview of Load Balancing Methods in Cloud Systems

Roman Minailenko, Vitalii Reznichenko, Oksana Konoplitska-Slobodenyuk, Liudmyla Polishchuk

About the Authors

Roman Minailenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: aron70@ukr.net, ORCID ID: 0000-0002-3783-0476

Vitalii Reznichenko, Lecturer, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID ID: 0000-0001-6734-6485

Oksana Konoplitska-Slobodenyuk, Lecturer, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID ID: 0000-0001-9981-5194

Liudmyla Polishchuk, Senior Lecturer, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: ORCID ID: 0000-0001-5093-1581

Abstract

Cloud systems are currently the most popular concept of information systems and are the result of the evolution of a chain of methods for their construction. The main task of cloud technologies is to create a virtual cloud system consisting of virtual distributed resources. These resources provide remote provisioning of cloud access services with the required level of customer service Analysis and load balancing in cloud systems is quite an urgent task, as most open access cloud systems use simple load schedulers for their physical servers. The problem of load balancing requires a solution not when the server unexpectedly failed in the process of working on the task, which discourages users from using such a product, but at the very beginning of the project. In the early stages of design, it is acceptable to increase capacity by connecting new servers or using code optimization algorithms. But when a certain limit is reached, these measures become insufficient. The article reviews the methods of load balancing in cloud systems. It is shown that the existing methods of load balancing of cloud systems have limited use and currently there is no universal load balancing system. In addition, none of the considered methods takes into account such important components of systems as network and disk subsystem. Load balancing methods for cloud systems require improvement, the purpose of which should be the ability to fully monitor the system to meet the requirements of users and developers.

Keywords

cloud systems, computing resources, load balancing, performance

Full Text:

PDF

References

1. Кarr, N. (2014). Velikij perehod: Chto govorit revoliusia oblashnyh tehnologij Elektron. dan. М.: Mann, Ivanov i Ferber [in Russian].

2. Andreevskij, I.L. (2018). Tehnologii оoblachnyh vychislenij . Spb.: Sankt-Peterburjskij gosudarstvennyj ekonomicheskij universitet [in Russian].

3. Caballer, M., Blanquer, I., Moltó, G. & de Alfonso C. (2015). Dynamic management of virtual infrastructures . Journal of Grid Computing. V. 13. No. 1. P. 53–70. Doi: 10.1007/s10723-014-9296-5 [in English].

4. Giannakopoulos I., Konstantinou I., Tsoumakos D. & Koziris N. (2018). Cloud application deployment with transient failure recovery . Journal of Cloud Computing. V. 7. No. 1. Art. no. 11. Doi: 10.1186/s13677-018-0112-9 [in English].

5. Spanaki, P. & Sklavos, N. (2018). Cloud Computing: Security Issues and Establish-ing Virtual Cloud Environment via Vagrant to Secure Cloud Hosts . Computer and Network Security Essentials. Springer, P. 539– 553. Doi: 10.1007/978-3-319-58424-9_31 [in English].

6. Hashimoto, M. (2013). Vagrant: Up and Running: Create and Manage Virtualized Development Environments – O'Reilly Media Inc. [in English].

7. Mouat A. (2016). Using Docker: Developing and Deploying Software with Con-tainers .O'Reilly Media Inc. [in English].

8. Sammons G. (2016). Learning Vagrant: Fast programming guide . CreateSpace Independent Publishing Platform. [in English].

9. Peacock, M. (2015). Creating Development Environments with Vagrant . Packt Publishing Ltd. [in English].

10. Iuhasz, G., Pop, D. & Dragan, I. (2016). Architecture of a scalable platform for monitoring multiple big data frameworks . Scalable Computing: Prac-tice and Experience. V. 17. No. 4. P. 313-321. Doi: 10.12694/scpe.v17i4.1203 [in English].

11. Nikulchev, E., Ilin, D., Kolyasnikov, P., Belov, V., Zakharov, I. & Malykh, S. (2018). Programming Technologies for the Development of Web-Based Platform for Digital Psychological Tools . International journal of advanced computer science and applications. V. 9. No. 8. P. 34-45. Doi:10.14569/IJACSA.2018.090806 [in English].

12. Kashyap. S., Min. C. & Kim. T. (2016). Opportunistic spinlocks: Achieving virtual machine scalability in the clouds . ACM SIGOPS Operating Systems Review. V. 50. No. 1. P. 9-16. Doi: 10.1145/2903267.2903271 [in English].

13. Saikrishna, P. S., Pasumarthy, R. & Bhatt, N. P. (2016). Identification and multivari-able gain-scheduling control for cloud computing systems IEEE Trans. Control Sys. Technol., Vol.25, no.3, pp.792-807.

14. Saveljev А.О. (2016). Introduction to Microsoft Cloud Solutions.. (2d еd.). Мoskow :NОU Intuit [in Russian].

Citations

  1. Карр Н. Великий переход: что готовит революция облачных технологий. / перевод. Андрей Баранов. М.: Манн, Иванов и Фербер, 2014. URL: http://loveread.ec/view_global.php?id=66055/
  2. Андреевский И.Л. Технологии облачных вычислений. СПб.: Санкт-Петербургский государствен-ный экономический университет, 2018. 79 с.
  3. Caballer M., Blanquer I., Moltó G., de Alfonso C. Dynamic management of virtual infrastructures . Journal of Grid Computing. 2015. Vol. 13. No. 1. P. 53–70. Doi: 10.1007/s10723-014-9296-5
  4. Giannakopoulos I., Konstantinou I., Tsoumakos D., Koziris N. Cloud application deployment with transient failure recovery . Journal of Cloud Computing. 2018. Vol. 7. No. 1. Art. no. 11. Doi: 10.1186/s13677-018-0112-9
  5. Spanaki P., Sklavos N. Cloud Computing: Security Issues and Establish-ing Virtual Cloud Environment via Vagrant to Secure Cloud Hosts . Computer and Network Security Essentials. Springer, 2018. P. 539– 553. Doi: 10.1007/978-3-319-58424-9_31
  6. Hashimoto M. Vagrant: Up and Running: Create and Manage Virtualized Development Environments . O'Reilly Media Inc, 2013.
  7. Mouat A. Using Docker: Developing and Deploying Software with Con-tainers . O'Reilly Media Inc, 2016.
  8. Sammons G. Learning Vagrant: Fast programming guide – CreateSpace Independent Publishing Platform, 2016.
  9. Peacock, M. Creating Development Environments with Vagrant . Packt Publishing Ltd, 2015.
  10. Iuhasz G., Pop D., Dragan I. Architecture of a scalable platform for monitoring multiple big data frameworks . Scalable Computing: Prac-tice and Experience. 2016. V. 17. No. 4. P. 313-321. Doi: 10.12694/scpe.v17i4.1203
  11. Nikulchev E., Ilin D., Kolyasnikov P., Belov V., Zakharov I., Malykh S. Programming Technologies for the Development of Web-Based Platform for Digital Psychological Tools . International journal of advanced computer science and applications. 2018. Vol. 9. No. 8. P. 34-45. Doi:10.14569/IJACSA.2018.090806
  12. Kashyap S., Min C., Kim T. Opportunistic spinlocks: Achieving virtual machine scalability in the clouds . ACM SIGOPS Operating Systems Review. 2016. Vol. 50. No. 1. P. 9-16. Doi: 10.1145/2903267.2903271.
  13. Saikrishna P. S., Pasumarthy R., Bhatt N. P. Identification and multivari-able gain-scheduling control for cloud computing systems . IEEE Trans. Control Sys. Technol., 2016, Vol.25, no.3, pp.792-807.
  14. Савельев А.О. Введение в облачные решения Microsoft. Курс лекций. 2-е издание, исправленное. М.: НОУ Интуит, 2016.
Copyright (c) 2021 Roman Minailenko, Vitalii Reznichenko, Oksana Konoplitska-Slobodenyuk, Liudmyla Polishchuk