DOI: https://doi.org/10.32515/2414-3820.2023.53.176-185

Application of Mechatronic Systems in the System of Machines for Animal Husbandry

Vasyl Kravchenko, Andrii Voitik, Ivan Lisovyi

About the Authors

Vasyl Kravchenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Uman National University of Horticulture, Uman, Ukraine, e-mail: kr.vasyl.v@gmail.com, ORCID ID: 0000-0003-2334-0705

Andrii Voitik, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Uman National University of Horticulture, Uman, Ukraine, e-mail: av.afex81@gmail.com, ORCID ID: 0000-0002-8196-3102

Ivan Lisovyi, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Uman National University of Horticulture, Uman, Ukraine, e-mail: lisov.iv.ol@gmail.com, ORCID ID: 0000-0003-1480-1805

Abstract

The purpose of this work is the systematization of research and implementation of mechatronic systems in the system of machines for keeping, caring for and obtaining the primary products of animal husbandry. The use of mechatronic systems in keeping animals and poultry, providing a microclimate, watering, feeding, removing manure and obtaining products is considered. The development of mechatronic systems in the animal husbandry system involves controlling the movement of animals through the farm, which is mainly provided by pre-selection gates. Unmanned aerial vehicles can also be used for animal monitoring when animals are kept out on pasture. To ensure the proper microclimate in modern ventilation systems, programmable multi-stage controllers are used to control the ventilation equipment. Introduction of elements of mechatronic systems into animal watering, there was a means of controlling the consumption of water individually by each animal. The application of mechatronic systems is also in stationary feed distribution systems, in mobile systems such as self-propelled or coordinate mixer dispensers, feed pushers, as well as in systems for recognizing the weight and size of animals to automatically change the amount of feed given to individual animals. The implementation of mechatronic systems in manure removal systems is realized in automated scraper systems and in mobile manure cleaning robots. There are also machines for milking and collecting eggs equipped by mechatronic systems. Conducted research shows that almost all mechanized processes of keeping, care and obtaining products in livestock and poultry farming use mechatronic systems, which already either have specific design solutions and are used on farms or are still at the stages of development and research. The main driving force behind the introduction of mechatronic systems in animal husbandry is the reduction of labor costs, improved control over mechanized processes on the farm, improvement of the performance of mechanized technological processes and ensuring the welfare of animals.

Keywords

mechatronic systems, machines for animal husbandry, keeping of animals, care, primary production

Full Text:

PDF

References

1. Boltianskyi, B.V., Boltianska, N.І. & Kovalov, O.O. (2021). Perspektyvy rozvytku mekhatronnykh system v silskomu hospodarstvi [Prospects for the development of mechatronic systems in agriculture]. Modern engineering of agro-industrial and food industries: Materialy MNPK (25-26 lystopada 2021 r.)  Materials of MNPC (pp. 150-152) [in Ukrainian].

2. Pavelchuk, Y.F. & Kolinchuk, R.V. (2023). Tekhnolohii u tochnomu tvarynnytstvi [Technologiesinprecisionlivestock]. Naukaitekhnikasohodni – Science and technology today, 8 (22), 420-434 [in Ukrainian].

3. Lebid, O.V., Kiporenko, S.S. & Vovk, V.Yu. (2023). Vykorystannia tekhnolohii shtuchnoho intelektu v silskomu hospodarstvi: yevropeiskyi dosvid ta zastosuvannia v Ukraini [Use of artificial intelligence technologies in agriculture: european experience and application in ukraine]. Elektronnemodeliuvannia – Electronic Modeling, Vol. 45, № 3, 57-71 [in Ukrainian].

4. Synyavina, Yu. & Butenko, T. (2021). Perspektyvy rozvytku haluzi tvarynnytstva v umovakh tsyfrovizatsii [Prospects for the development of the livestock industry in the conditions of digitalization]. Ekonomichnyianaliz – Economic analysis, 31.1, 178-185 [in Ukrainian].

5. Tkach, V.V., Fenenko, A.I., Afanasiev I.A. (2021). Perspektyvy tekhniko-tekhnolohichnoho zabezpechennia vyrobnytstva moloka na osnovi smart-tekhnolohii [Prospects for technical and technological support of milk production based on smart technologies]. Mekhanizatsiia ta elektryfikatsiiasilskohohospodarstva – Mechanization and electrification of agriculture, 14 (113), 142-150 [in Ukrainian].

6. Veselov, Ye.V., Shcherbakova, I.L. & Levchenko, I.S. (2019). Innovatsiini tekhnolohii u tvarynnytstvi ta efektyvnist vprovadzhennia kontseptsii Smart Farm [Innovative livestock technologies and the effectiveness of smart farm implementation]. Tavriiskyinaukovyivisnyk – Taurian Scientific Bulletin, 109.2, 15-20 [in Ukrainian].

7. Azeta, J., Bolu, C. A., Alele, F., Daranijo, E. O., Onyeubani, P., & Abioye, A. A. (2019, December). Application of Mechatronics in Agriculture: A review. In Journal of Physics: Conference Series (Vol. 1378, No. 3, p. 032006). IOP Publishing [in English].

8. Finger, R. (2023). Digital innovations for sustainable and resilient agricultural systems. European Review of Agricultural Economics, 50(4), 1277-1309 [in English].

9. Neethirajan, S. (2021). Ethics of digital animal farming. Preprints, 2021b070368 [in English].

10. Monteiro, A., Santos, S., & Gonçalves, P. (2021). Precision Agriculture for Crop and Livestock Farming—Brief Review. Animals, 11, 2345 [in English].

11. Maurel, V. B., &Huyghe, C. (2017). Putting agricultural equipment and digital technologies at the cutting edge of agroecology. Ocl, 24(3), D307 [in English].

12. Cheng, C., Fu, J., Su, H., & Ren, L. (2023). Recent advancements in agriculture robots: Benefits and challenges. Machines, 11(1), 48 [in English].

13. Morrone, S., Dimauro, C., Gambella, F., &Cappai, M. G. (2022). Industry 4.0 and precision livestock farming (PLF): an up to date overview across animal productions. Sensors, 22(12), 4319 [in English].

14. Neethirajan, S. (2020). The role of sensors, big data and machine learning in modern animal farming. Sensing and Bio-Sensing Research, 29, 100367 [in English].

15. Rodenburg, J. (2013, June). Success factors for automatic milking. In Precision Dairy Conference, Mayo Civic Center, Rochester, Minnesota (pp. 22-34) [in English].

16. Simitzis, P., Tzanidakis, C., Tzamaloukas, O., & Sossidou, E. (2021). Contribution of Precision Livestock Farming systems to the improvement of welfare status and productivity of dairy animals. Dairy, 3(1), 12-28 [in English].

17. Alejandro, M. (2016). Automation devices in sheep and goat machine milking. Small Ruminant Research, 142, 48-50 [in English].

18. Connolly, A. (2019). The new Digital World of Dairy Farming – Bridging the data gap. Precision Dairy Farming. Proceedings of the 2nd International Precision Dairy Farming Conference.18-20 June 2019. University of Minnesota, (pp. 1-7) [in English].

19. Janni, K.A. & Jacobson, L.D. (2013, June). Multistage ventilation controllers: not just a thermostat. In Precision Dairy Conference, Mayo Civic Center, Rochester, Minnesota (pp. 63-64) [in English].

20. Janni, K.A. & Jacobson, L.D. (2013, June). Ventilation system demonstration trailer. In Precision Dairy Conference, Mayo Civic Center, Rochester, Minnesota (pp. 187-188) [in English].

21. Axegard, C. (2017). Individual drinking water intake of dairy cows in an AMS barn. Degree project in Animal Science Submitted to Swedish University of Agricultural Sciences [in English].

22. Ertuğrul, M., Zengin, K., & Tarhan, S. (2020). Development of a new automatic water intake measurement and recording system to monitor individual water drinking behaviors of cattle. AnadoluTarımBilimleriDergisi, 35(2), 245-250 [in English].

23. Romano, E., Brambilla, M., Cutini, M., Giovinazzo, S., Lazzari, A., Calcante, A., ...& Bragaglio, A. (2023). Increased Cattle Feeding Precision from Automatic Feeding Systems: Considerations on Technology Spread and Farm Level Perceived Advantages in Italy. Animals, 13(21), 3382 [in English].

24. Grothmann, A., Nydegger, F., Moritz, C. & Bisaglia, C. (2010). Automatic feeding systems for dairy cattle - potential for optimization in dairy farming. International Conference on Agricultural Engineering - AgEng 2010: Towards Envirmonmental Technologies [in English].

25. Aydin, A. (2021). Novel Technologies and Automation Systems In Livestock Farms. Arch Animal Husb& Dairy Sci. 2(3):. AAHDS.MS.ID.000538 [in English].

26. Oursolutions. Retrievedfrom. lely.com. Retrieved from https://www.lely.com/solutions/ [in English].

27. Mosquera, I.L.Q., Fierro, J.E.R., Zacarias, J.R.O., Montero, J.B., Quijano, S.A.C., & Huamanchahua, D. (2021, December). Design of an Automated System for Cattle-Feed Dispensing in Cattle-Cows. In 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) (pp. 0671-0675). IEEE [in English].

28. Ebertz, P., Krommweh, M. S., &Büscher, W. (2019). Feasibility study: improving floor cleanliness by using a robot scraper in group-housed pregnant sows and their reactions on the new device. Animals, 9(4), 185 [in English].

29. Ruud, L.E., & Froknestad, Ø. (2018). Function of automatic manure scrapers. In 10th International Livestock Environment Symposium (ILES X) (p. 1). American Society of Agricultural and Biological Engineers [in English].

30. Naumenko, O.A., Palii, A.P. & Chyhryn, O.A. (2015). Zastosuvanniarobotyzovanykhsystem u molochnomuskotarstvi [Application of robotic systems indairy farming]. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskohohospodarstva prysviachenyi 85-richchiu universytetu – The Bulletin of the Kharkiv National Technical University of Agriculture is dedicatedto the 85th anniversary of the university, 157, 32-38 [in Ukrainian].

31. John, A. J., Clark, C. E. F., Freeman, M. J., Kerrisk, K. L., Garcia, S. C., & Halachmi, I. (2016). Review: milking robot utilization, a successful precision livestock farming evolution. Animal 10. 1484–1492 [in English].

32. Piwczyński, D., Gondek, J., Sitkowska, B., & Kolenda, M. (2020). Comparison of results coming from automatic milking system in selected countries in Europe and US. Journal of Central European Agriculture, 21(2), 187-196 [in English].

33. Tremblay, M., Hess, J. P., Christenson, B. M., McIntyre, K. K., Smink, B., van der Kamp, A. J., ... & Döpfer, D. (2016). Factors associated with increased milk production for automatic milking systems. Journal of Dairy Science, 99(5), 3824-3837 [in English].

34. Vroegindeweij, B. A., van Willigenburg, G. L., Koerkamp, P. W. G., & van Henten, E. J. (2014). Path planning for the autonomous collection of eggs on floors. Biosystems engineering, 121, 186-199 [in English].

35. Vroegindeweij, B. A., Blaauw, S. K., IJsselmuiden, J. M., & van Henten, E. J. (2018). Evaluation of the performance of PoultryBot, an autonomous mobile robotic platform for poultry houses. Biosystems engineering, 174, 295-315 [in English].

Citations

1. Болтянський О.В., Болтянська Н.І., Ковальов О.О. Перспективи розвитку мехатронних систем в сільському господарстві. Сучасна інженерія агропромислових і харчових виробництв: Матеріали МНПК, 25-26 листопада 2021 р. Харків: ДБТУ, 2021. C. 150-152.

2. Павельчук Ю., Колінчук Р. Технології у точному тваринництві. Наука і техніка сьогодні. 2023, №8 (22). C. 420-434. DOI: https://doi.org/10.52058/2786-6025-2023-8(22)-420-434

3. Лебідь О.В., Кіпоренко С.С., Вовк В.Ю. Використання технологій штучного інтелекту в сільському господарстві: європейський досвід та застосування в Україні. Електронне моделювання. 2023. Т. 45.№ 3. С. 57-71. DOI: https://doi. org/10.15407/emodel. 45.03. 057, 2023

4. Соловей О.Ю., Лисова В.П. Перспективи розвитку галузі тваринництва в умовах цифровізації. Економічний аналіз. Сучасні тенденції розвитку науки та освіти: Матеріали Всеукраїнської науково-практичної інтернет-конференції педагогічних та науково-педагогічних працівників, аспірантів, молодих учених 30 листопада 2021 року. Ніжин, 2021. С. 145-151.

5. Ткач В.В., Фененко А.І., Афанасьєв І.А. Перспективи техніко-технологічног озабезпечення виробництва молока на основі смарт-технологій. Механізація та електрифікація сільського господарства. 2021. Вип. 14 (113). С. 142-150. DOI: https://doi.org/10.37204/0131-2189-2021-14-16

6. Веселов Є.В., Щербакова І.Л., Левченко І.С. Інноваційні технології у тваринництві та ефективність впровадження концепції Smart Farm. Таврійський науковий вісник. 2019. Вип.109.2: С.15-20. DOI https://doi.org/10.32851/2226-0099.2019.109-2.3

7. Azeta, J. et al. Application of Mechatronics in Agriculture: A review. Journal of Physics: Conference Series. IOP Publishing, 2019. p. 032006. DOI:10.1088/1742-6596/1378/3/032006

8. Finger R. Digital innovations for sustainable and resilient agricultural systems. European Review of Agricultural Economics. 2023, 50.4: 1277-1309. DOI: https://doi.org/10.1093/erae/jbad021

9. Neethirajan S. Ethics of digital animal farming. Preprints. 2021, 2021070368. DOI: 10.20944/preprints202107.0368.v1

10. Monteiro A., Santos S.,Gonçalves P. Precision Agriculturefor Crop and LivestockFarming—Brief Review. Animals. 2021. 11. 2345. DOI: https://doi.org/10.3390/ani11082345

11. Bellon Maurel V., Huyghe C. Putting agricultural equipment and digital technologies at the cutting edge of agroecology. OCL. 2017. 24(3): D307. DOI: https://doi.org/10.1051/ocl/2017028

12. Cheng C., Fu J., Su H., Ren L. Recent Advancements in Agriculture Robots: Benefits and Challenges. Machines. 2023. 11. 48. DOI: https://doi.org/10.3390/machines11010048

13. Morrone S., Dimauro C., Gambella F., Cappai M.G. Industry 4.0 and Precision Livestock Farming (PLF): An up to Date Overview across Animal Productions. Sensors. 2022. 22, 4319. DOI: https://doi.org/10.3390/s22124319

14. Neethirajan S. The role of sensors, big data and machine learning in modern animal farming. Sensing and Bio-Sensing Research. 2020. 29. 100367.DOI: https://doi.org/10.1016/j.sbsr.2020.100367

15. Rodenburg J. Success factors for automatic milking. Precision Dairy Conference. Mayo Civic Center, Rochester, Minnesota. June 26-27, 2013. 2013. p. 22-34.

16. Simitzis P., Tzanidakis C., Tzamaloukas O., Sossidou E. Contribution of Precision Livestock Farming Systems to the Improvement of Welfare Status and Productivity of Dairy Animals. Dairy. 2022; 3(1)P. 12-28. DOI: https://doi.org/10.3390/dairy3010002

17. Alejandro M. Automation devices in sheep and goat machine milking. Small Ruminant Research. 2016. 142. Р. 48–50. DOI: https://doi.org/10.1016/j.smallrumres.2016.04.004

18. Connolly A. The new Digital World of Dairy Farming – Bridging the data gap. Precision Dairy Farming. Proceedings of the 2nd International Precision Dairy Farming Conference. 18-20 June 2019. University of Minnesota, 2019. P. 1-7.

19. Janni K.A., Jacobson L.D. Multistage ventilation controllers: not just a thermostat. Precision Dairy Conference, Mayo Civic Center, Rochester, Minnesota . June 26-27, 2013. 2013. P. 63-64.

20. Janni K.A., Jacobson L.D. Ventilation system demonstration trailer. Precision Dairy Conference. Mayo Civic Center, Rochester, Minnesota . June 26-27, 2013. P. 187-188.

21. Axegard C. Individual drinking water intake of dairy cows in an AMS barn. Degree project in Animal Science Submitted to Swedish University of Agricultural Sciences. 2017. 42 p.

22. Ertuğrul M., Zengin K., Tarhan S. Development of a new automatic water intake measurement and recording system to monitor individual water drinking behaviors of cattle. Anadolu Tarım Bilimleri Dergisi. 2020, 35.2: P. 245-250. DOI: https://doi.org/10.7161/omuanajas.673790

23. Romano E, et al. Increased Cattle Feeding Precision from Automatic Feeding Systems: Considerations on Technology Spread and Farm Level Perceived Advantages in Italy. Animals. 2023; 13(21): 3382. DOI: https://doi.org/10.3390/ani13213382

24. Grothmann A., Nydegger F., Moritz C., Bisaglia C. Automatic feeding systems for dairy cattle - potential for optimization in dairy farming. Towards Envirmonmental Technologies. International Conference on Agricultural Engineering - AgEng 2010. Cemagref, Clermont-Ferrand (2010).P. 275-286.

25. Aydin A. Novel Technologies and Automation Systems In Livestock Farms. Arch Animal Husb& Dairy Sci. 2(3): 2021. AAHDS.MS.ID.000538. DOI: 10.33552/AAHDS.2021.02.000538.

26. Oursolutions: веб-сайт. URL: https://www.lely.com/solutions/ (датазвернення: 10.11.2023).

27. Mosquera L.Q., et al. Design of an Automated System for Cattle-Feed Dispensing in Cattle-Cows. IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). New York, NY, USA. 2021. P. 0671-0675. DOI: 10.1109/UEMCON53757.2021.9666491.

28. Ebertz P., Krommweh M.S., Büscher W. Feasibility Study: Improving Floor Cleanliness by Using a Robot Scraper in Group-Housed Pregnant Sows and Their Reactions on the New Device. Animals. 2019; 9(4):185. DOI: https://doi.org/10.3390/ani9040185

29. Ruud L.E., Froknestad Ø. Function of automatic manurescrapers. 10th International Livestock Environment Symposium (ILES X). American Society of Agricultural and Biological Engineers, 2018. p. 1. DOI:10.13031/iles.18-029

30. Науменко О.А., Палій А.П., Чигрин О.А. Застосування роботизованих систем у молочному скотарстві. Вісник Харківського національного технічного університету сільського господарства присвячений 85-річчю університету. 2015. Вип. 157 «Технічні системи і технології тваринництва». С. 32-38.

31. John A.J., et al. Review: Milking robot utilization, a successful precision livestock farming evolution. Animal 2016. 10. 1484–1492.

32. Piwczyński D., Gondek J., Sitkowska B., Kolenda M. Comparison of results coming from automatic milking system in selected countries in EUROPE and U.S. Journal of Central European Agriculture. 2020. 21.2: P. 187-196. DOI: /10.5513/JCEA01/21.2.2559

33. Tremblay M., et al. Factors associated with increased milk production for automatic milking systems. Journal of Dairy Science. 2016. 99. 3824–3837. DOI: https://doi.org/10.3168/jds.2015-10152

34. Bastiaan A., et al. Path planning for the autonomous collection of eggs on floors. Biosystems Engineering. Vol.121. 2014. P. 186-199. DOI: https://doi.org/10.1016/j.biosystemseng.2014.03.005

35. Bastiaan A., et al. Evaluation of the performance of Poultry Bot, an autonomous mobile robotic platform for poultry houses. Biosystems Engineering. Vol. 174. 2018. P. 295-315, DOI: https://doi.org/10.1016/j.biosystemseng.2018.07.015

Copyright (c) 2023 Vasyl Kravchenko, AndriiVoitik, Ivan Lisovyi