DOI: https://doi.org/10.32515/2414-3820.2023.53.138-148

Mathematical Modeling and the Results of Experimental Research of the Process of Density-Based Seed Separation Using Vibro-Pneumatic-Impulse Technology

Serhii Stepanenko, Daryna Volyk

About the Authors

Serhii Stepanenko, Senior Researcher, Doctor in Technics (Doctor of Technic Sciences), Institute of Mechanics and Automation of Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, Glevakha, Ukraine, e-mail: stepanenko_s@ukr.net, ORCID ID: 0000-0002-8331-4632

Daryna Volyk, Junior Research Fellow, Institute of Mechanics and Automation of Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, Hlevakha, Ukraine, ORCID ID: 0009-0001-1979-861X

Abstract

The results of the mathematical simulation of the movement of grain material on the surface of the perforated deck of the vibro-pneumatic-impulse separator have been presented. Both force and kinematic models were employed, considering the geometric characteristics of the perforated deck surface in dynamic interaction with the kinematic indicators of processing. The calculations based on the proposed model allow for determining the trajectories of movement, velocities, and accelerations of the grain seeds within the grain medium under the combined action of vibrations and the pneumatic-impulse flow. As a result of the scientific research and analysis of the forces created according to the developed mathematical model, it has been established that the most significant influence on the process of grain material movement, both in the horizontal and vertical directions, is exerted by the impulse force (pulsations) of the air flow, the pressure force of the underlying layers of the grain medium (for seeds in the middle part and on the surface of the perforated deck), frictional forces, the weight of the seeds, and the Archimedean force. Therefore, in order to intensify the process of fractionation of the grain medium and increase the specific productivity of the vibro-pneumatic-impulse separator, it is necessary to increase the force of the pulsating air flow, the force of inertia of the oscillatory motion, friction, and lateral pressure on the seeds within the grain medium.

Keywords

seeds, density, specific load, differential equations, seed displacement velocity, experimental research, prototype

Full Text:

PDF

References

1. Kotov, B. I., & Stepanenko, S. P. (2023). Basics of the theory and technology of air separation of grain materials. Kyiv: TsP Komprynt. [in Ukrainian].

2. Kotov, B. I., & Stepanenko, S. P. (2020). The main theoretical principles of the separation of grain material in air ducts with non-uniform air flow speed. Design, production and operation of agricultural machines, (50), 122–123. [in Ukrainian].

3. Rebot, D. P., & Topilnytskyi, V. H. (2022). Mathematical model of movement of loose material in a vibrating separator. Automation of production processes in mechanical engineering and instrument engineering. (56), 67–74. [in Ukrainian].

4. Rebot, D. P., & Topilnytskyi, V. H. (2021). Mathematical modeling of the interaction of dynamic characteristics of loose raw materials in the process of vibration separation. Scientific Bulletin of UNFU.31 (2), 88-92. [in Ukrainian].

5. Stepanenko, S. P., Kotov, B. I., & Kalinichenko, R. A. (2021). Study of the movement of grain material particles in a vertical channel under the conditions of air flow pulsations. Agricultural machinery., (47), 25–36. http://dx.doi.org/10.36910/acm.vi47.619 [in Ukrainian].

6. Nesterenko, A., Leshchenko, S., Vasylkovskyi, O., & Petrenko, D. (2017). Analytical assessment of the pneumatic separation quality in the process of grain multilayer feeding. INMATEH. Agricultural Engineering, (53(3)), 65–70. [in English].

7. Mykhailov, Y., Zadosna, N., Postnikova, M., Pedchenko, G., Khmelovskyi, V., Bondar, M., ... Tomaszewska-Górecka, W. (2021). Energy Assessment of the Pneumatic Sieve Separator for Agricultural Crops. Agricultural Engineering, 25(1), 147–156. http://dx.doi.org/10.2478/agriceng-2021-0012 [in English].

8. Rogovskii, I., Titova, L., Trokhaniak, V., Trokhaniak, O., & Stepanenko, S. (2020). Experimental study of the process of grain cleaning in a vibro-pneumatic resistant separator with passive weeders. Series II: Forestry Wood Industry Agricultural Food Engineering, 13(62)(1), 117–128. http://dx.doi.org/10.31926/but.fwiafe.2020.13.62.1.11 [in English].

9. Tishchenko, L., Kharchenko, S., Kharchenko, F., Bredykhin, V., & Tsurkan, O. (2016). Identification of a mixture of grain particle velocity through the holes of the vibrating sieves grain separators. Eastern-European Journal of Enterprise Technologies, 2(7(80)), 63. http://dx.doi.org/10.15587/1729-4061.2016.65920 [in English].

10. Aliiev, E., Gavrilchenko, A., Tesliuk, H., Tolstenko, A., & Koshul’ko, V. (2019). Improvement of the sunflower seed separation process efficiency on the vibrating surface. Acta Periodica Technologica, (50), 12–22. http://dx.doi.org/10.2298/apt1950012a [in English]

11. Stepanenko, S., Aneliak, M., Kuzmych, A., Kustov, S., & Lysaniuk, V. (2022). Improving the efficiency of harvesting sunflower seed crops. INMATEH Agricultural Engineering, 331–340. http://dx.doi.org/10.35633/inmateh-67-34 [in English].

12. Bredykhin, V., Pak, A., Gurskyi, P., Denisenko, S., & Bredykhina, K. (2021). Improving the mechanical-mathematical model of pneumatic vibration centrifugal fractionation of grain materials based on their density. Eastern-European Journal of Enterprise Technologies, 4(1(112)), 54–60. http://dx.doi.org/10.15587/1729-4061.2021.236938 [in English].

13. Kharchenko, S., Borshch, Y., Kovalyshyn, S., Piven, M., Abduev, M., Miernik, A., ... Kiełbasa, P. (2021). Modeling of Aerodynamic Separation of Preliminarily Stratified Grain Mixture in Vertical Pneumatic Separation Duct. Applied Sciences, 11(10), 4383. http://dx.doi.org/10.3390/app11104383 [in English].

14. Reguła, T., Frączek, J., & Fitas, J. (2020). A Model of Transport of Particulate Biomass in a Stream of Fluid. Processes, 9(1), 5. http://dx.doi.org/10.3390/pr9010005 [in English].

15. Stepanenko, S., Kotov, B., Kuzmych, A., Kalinichenko, R., & Hryshchenko, V. (2023). Research of the process of air separation of grain material in a vertical zigzag channel. Journal Of Central European Agriculture, 24(1), 225–235. http://dx.doi.org/10.5513/jcea01/24.1.3732 [in English].

16. Stepanenko, S., Kotov, B., Rud, A., & Zamrii, M. (2022). Theoretical studies of the process of grain material movement on the surface of the stepped vibrating feeder. 2(105), 25–32. http://dx.doi.org/10.37128/2306-8744-2022-2-3 [in English].

17. Adamchuk, V., Bulgakov, V., Ivanovs, S., Holovach, I., & Ihnatiev, Y. (b. d.). Theoretical study of pneumatic separation of grain mixtures in vortex flow. In Engineering for Rural Development, (20), 657–664. [in English].

18. Adamchuk, V., Bulgakov, V., Gadzalo, I., Ivanovs, S., Stepanenko, S., Holovach, I., & Ihnatiev, Y. (2021). Theoretical Study of Vibrocentrifugal Separation of Grain Mixtures on a Sieveless Seed-cleaning Machine. Rural Sustainability Research, 46(341), 116–124. http://dx.doi.org/10.2478/plua-2021-0023 [in English].

Citations

1. Котов Б. І., Степаненко С. П. Основи теорії та технології повітряної сепарації зернових матеріалів : монографія. Київ : ЦП Компринт, 2023. 427 с.

2. Котов Б. І., Степаненко С. П. Основні теоретичні положення сепарації зернового матеріалу в повітряних каналах з нерівномірною швидкістю повітряного потоку. Конструювання, виробництво та експлуатація сільськогосподарських машин. 2020. № 50. С. 122–123.

3. Ребот Д. П., Топільницький В. Г. Математична модель руху сипкого матеріалу у вібраційному сепараторі. Автоматизація виробничих процесів у машинобудуванні та приладобудуванні. 2022. № 56. С. 67–74.

4. Ребот Д. П., Топільницький В. Г. Математичне моделювання взаємовпливу динамічних характеристик сипкої сировини у процесі вібраційної сепарації. Scientific Bulletin of UNFU. 2021. Т. 31, № 2. С. 88–92. https://doi.org/10.36930/40310214

5. Степаненко С. П., Котов Б. І., Калініченко Р. А. Дослідження руху частинок зернового матеріалу у вертикальному каналі за умов дії пульсацій повітряного потоку. Сільськогосподарські машини. 2021. № 47. С. 25–36. https://doi.org/10.36910/acm.vi47.619

6. Analytical assessment of the pneumatic separation quality in the process of grain multilayer feeding. INMATEH / A. Nesterenko et al. Agricultural Engineering. 2017. No. 53(3). P. 65–70.

7. Energy Assessment of the Pneumatic Sieve Separator for Agricultural Crops / Y. Mykhailov et al. Agricultural Engineering. 2021. Vol. 25, no. 1. P. 147–156. https://doi.org/10.2478/agriceng-2021-0012

8. Experimental study of the process of grain cleaning in a vibro-pneumatic resistant separator with passive weeders / I. Rogovskii et al. Series II: Forestry Wood Industry Agricultural Food Engineering. 2020. Vol. 13(62), no. 1. P. 117–128. https://doi.org/10.31926/but.fwiafe.2020.13.62.1.11

9. Identification of a mixture of grain particle velocity through the holes of the vibrating sieves grain separators / L. Tishchenko et al. Eastern-European Journal of Enterprise Technologies. 2016. Vol. 2, no. 7(80). P. 63. https://doi.org/10.15587/1729-4061.2016.65920

10. Improvement of the sunflower seed separation process efficiency on the vibrating surface / E. Aliiev et al. Acta Periodica Technologica. 2019. No. 50. P. 12–22. https://doi.org/10.2298/apt1950012a

11. Improving the efficiency of harvesting sunflower seed crops / S. Stepanenko et al. INMATEH Agricultural Engineering. 2022. P. 331–340. https://doi.org/10.35633/inmateh-67-34

12. Improving the mechanical-mathematical model of pneumatic vibration centrifugal fractionation of grain materials based on their density / V. Bredykhin et al. Eastern-European Journal of Enterprise Technologies. 2021. Vol. 4, no. 1(112). P. 54–60. https://doi.org/10.15587/1729-4061.2021.236938

13. Modeling of Aerodynamic Separation of Preliminarily Stratified Grain Mixture in Vertical Pneumatic Separation Duct / S. Kharchenko et al. Applied Sciences. 2021. Vol. 11, no. 10. P. 4383. https://doi.org/10.3390/app11104383

14. Reguła T., Frączek J., Fitas J. A Model of Transport of Particulate Biomass in a Stream of Fluid. Processes. 2020. Vol. 9, no. 1. P. 5. https://doi.org/10.3390/pr9010005

15. Research of the process of air separation of grain material in a vertical zigzag channel / S. Stepanenko et al. Journal Of Central European Agriculture. 2023. Vol. 24, no. 1. P. 225–235. https://doi.org/10.5513/jcea01/24.1.3732

16. Theoretical studies of the process of grain material movement on the surface of the stepped vibrating feeder / S. Stepanenko et al. 2(105). 2022. No. 2(105). P. 25–32. https://doi.org/10.37128/2306-8744-2022-2-3

17. Theoretical study of pneumatic separation of grain mixtures in vortex flow / V. Adamchuk et al. In Engineering for Rural Development. No. 20. P. 657–664.

18. Theoretical Study of Vibrocentrifugal Separation of Grain Mixtures on a Sieveless Seed-cleaning Machine / V. Adamchuk et al. Rural Sustainability Research. 2021. Vol. 46, no. 341. P. 116–124. https://doi.org/10.2478/plua-2021-0023

Copyright (c) 2023 Serhii Stepanenko, Daryna Volyk