DOI: https://doi.org/10.32515/2414-3820.2023.53.16-22

Influence of Parameters of Disc Coulters on the Transmission Capacity of Cutting Crop Residues in the System of Zero Tillage

Maksym Zayets

About the Authors

Maksym Zayets, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Polissia National University, Zhitomir, Ukraine, e-mail: mzaec81@gmail.com, ORCID ID: 0000-0002-2290-1892

Abstract

The implementation of no-tillage seeding technology has a number of economic and environmental benefits, such as improved soil properties, reduced erosion and soil degradation, and improved time and fuel efficiency. However, the main disadvantage of these technologies is that plant residues on the surface of the soil reduce the ability of uniform germination of seeds of agricultural crops, which requires the introduction of an additional process of harvesting or cutting plant residues. Theoretical studies substantiate the dependence of the diameter of a single disc coulter on the working depth of penetration of the disc, the depth of the layer of plant residues and the angle of compression. The use of active and passive coulters, which cut the straw by sliding on the working surface of the field. Experimental studies have established that the use of four different forms of disc coulters with a diameter of 380 mm (smooth with the number of teeth n=0, groove depth Δr=0 mm; toothed n=12, Δr=15 mm; toothed n=18, Δr=10 mm; toothed n=18, Δr=20 mm), straw with natural moisture (W=10.1%) and wet winter wheat straw with moisture (W=22.3%) were best cut through. Experimental studies have confirmed the restriction of the rotation of the active disc coulter at high speeds (speed coefficient λ>1.37 and λ=1.58), which leads to a greater amount of cut straw, compared to the case of using a disc coulter with passive rotation in contact with the soil ( λ=1.0). Serrated disc coulters cut straw and crop residues more efficiently than smooth discs. Studies confirm the dependence of straw cutting ability on the moisture content of the material, where the amount of straw cut through decreases as the moisture content of the material increases. Forced rotation of a toothed disc coulter (speed coefficient λ>1.37 and λ=1.58) in untreated soil (moisture 12.9±0.4%, hardness 0.5 MPa, disc penetration depth up to 35 mm) provides 56 ,0 – 69.3% cutting of winter wheat straw of natural moisture (W=10.1%); which is significantly greater than the values obtained during free movement of the disk toothed coulter at (λ=1.0).

Keywords

disc coulter, speed coefficient; harvest residues; no-till; distribution of straw, toothed discs

Full Text:

PDF

References

1. Koriakovskyi, A.V. & Bakirov, F.H. (2011). Samorozpushennia gruntu pid vplyvom solomianoi mulchi[Self-loosening of the soil under the influence of straw mulch]. Ahronomiia ta lisove hospodarstvo - Agronomy and forestry, Issue 22, 21-23 [in Ukrainian].

2. Nielsen, K. et al. (1998). Sustained oscillations in glycolysis: an experimental and theoretical study of chaotic and complex periodic behavior and of quenching of simple oscillations. Biophys Chem, 72(1-2):49-62. [in Belgium].

3. Zayets, M.L. (2021). Rezultaty doslidzhennia vplyvu rivnomirnosti rozpodilu pozhnyvnykh reshtok na hlybynu sivby ta urozhainist silskohospodarskykh kultur. Konstruiuvannia, vyrobnytstvo ta ekspluatatsiia s.-h. mashyn – Design, production and operation of agricultural machines, Issue 51, 36-46 [in Ukrainian].

4. Hevko, B.M., Liashchuk, O.L., Pavelchuk, Yu.F. et al. (2013). Tekhnolohichni osnovy proektuvannia ta vyhotovlennia posivnykh mashyn [Technological bases of designing and manufacturing of seeding machines]. Ternopil: TNTU imeni Ivana Puluia [in Ukrainian].

5. Sysolin, P.V., Osypov, I.M. & Sysolina, I.P. (2008). Ukraine Patent No. 34019. Kyiv [in Ukrainian].

6. Tebrügge, F. & Böhrnsen, A. (2000). Direktsaat. Beurteilung durch Landwirte und Experten in der EU und Nebraska. Landtechnik, 1, 17–19 [auf Deutsch].

7. Linke, C. (2006). Entwicklung der Direktsaat. Landtechnik, 61, 312–313 [in Deutsch].

8. Šarauskis, E., Vaiciukevicius E., Romaneckas K., Sakalauskas, A. & Baranauskaite, R. (2009). Economic and energetic evaluation of sustainable tillage and cereal sowing technologies in Lithuania. Rural Development 2009, Proceedings, 4 (1),280–285 [in English].

9. Šarauskis, E., Godlinski, F., Sakalauskas, A., Schlegel, M., Kanswohl, N., Romaneckas, K., Jasinskas, A. & Pilipavičius, V. (2010). Effects of soil tillage and sowing systems on sugar beet production under the climatic conditions of Lithuania. Landbauforschung Volkenrode, 2 (60), 101–110 [in English].

10. Linke, C. (1998). Direktsaat – eine Bestandsaufnahme unter besonderer Berьcksichtigung technischer, agronomischer und цkonomischer Aspekte. Dissertation, University of Hohenheim, Stuttgart [in Deutsch].

11. Romaneckas, K., Pilipavičius, V. & Šarauskis, E. (2010). Impact of seedbed density on sugar beet (Beta vulgaris L.) seed germination, yield and quality of roots. Journal of Food, Agriculture & Environment, 8 (2), 599–601. [in English].

12. Chen, Y., Tessier, S. & Irvine, B. (2004). Drill and crop performances as affected by different drill configurations for no-till seeding. Soil & Tillage Research, 77 (2), 147–155 [in English].

13. Van Oost, K., Cerdan O. & Quine, T.A. (2009). Accelerated sediment fluxes by water and tillage erosion on European agricultural land. Earth Surface Processes and Landforms, 34, 1625–1634 [in English].

14. Doan, V., Chen, Y. & Irvine, B. (2005). Effect of residue type on the performance of no-till seeder openers. Canadian Biosystems Engineering, 47, 29–35 [in English].

15. Kushwaha, R.L., Vaishnav, A.S. & Zoerb, G.C. (1986). Soil bin evaluation of disc coulter under no-till crop residue conditions. Transactions of ASAE, 29 , 40–44 [in English].

16. Hemmat, A., Adamchuk, V.I. & Jasa, P. (2008). Use of an instrumented disc coulter for mapping soil mechanical resistance. Soil & Tillage Research, 98, 150–163. [in English].

17. Fallahi, S. & Raoufat, M. H. (2008). Row-crop planter attachments in a conservation tillage system: A comparative study. Soil & Tillage Research, 98 , 27–34 [in English].

18. Karayel, D. (2009). Performance of a modified precision vacuum seeder for no-till sowing of maize and soybean. Soil & Tillage Research, 104, 121–125 [in English].

Citations

1. Коряковський А.В., Бакіров Ф.Г. Саморозпушення ґрунту під впливом солом'яної мульчі. Агрономія та лісове господарство. 2011. Вип. 22. С. 21-23.

2. Nielsen K, et al. Sustained oscillations in glycolysis: an experimental and theoretical study of chaotic and complex periodic behavior and of quenching of simple oscillations. Biophys Chem . 1998. 72 (1-2). Р. 49-62.

3. Заєць М. Л. Результати дослідження впливу рівномірності розподілу пожнивних решток на глибину сівби та урожайність сільськогосподарських культур. Конструювання, виробництво та експлуатація с.-г. машин. 2021. Вип. 51. С. 36–46.

4. Гевко Б.М., Лящук О.Л., Павельчуктаін Ю.Ф. Технологічні основи проектування і виготовленняпосівнихмашин:монографія . Тернопіль:Вид. ТНТУ ім. Івана Пулюя, 2013. 238 с.

5. Спосіб визначення якості розподілу сипких матеріалів вздовжрядка: пат. 34019 Україна / П.В. Сисолін, І.М. Осипов, І.П. Сисоліна: МПК A01C 7/00. № u 2008 02025 ; заявл. 18.02.2008 ; опубл. 25.07.2008, Бюл. № 14.

6. Tebrügge F., Böhrnsen Direktsaat A. Beurteilung durch Landwirte und Experten in der EU und Nebraska. Landtechnik. 2000. 1. Pp.17–19.

7. Linke C. Entwicklung der Direktsaat. Landtechnik. 2006. 61. Pp. 312–313.

8. Šarauskis E., Vaiciukevicius E., Romaneckas K., Sakalauskas A., Baranauskaite R. Economic and energetic evaluation of sustainable tillage and cereal sowing technologies in Lithuania. Rural Development 2009, Proceedings. 2009. 4 (1). Pp. 280–285

9. Šarauskis E., Godlinski F., Sakalauskas A., Schlegel M., Kanswohl N., Romaneckas K., Jasinskas A. Pilipavičius V. Effects of soil tillage and sowing systems on sugar beet production under the climatic conditions of Lithuania. Landbauforschung Volkenrode. 2010. 2 (60). Pp. 101–110.

10. Linke C. Direktsaat – eine Bestandsaufnahme unter besonderer Berьcksichtigung technischer, agronomischer und цkonomischer Aspekte. Dissertation, University of Hohenheim, Stuttgart, 1998. 482 pp.

11. Romaneckas K., Pilipavičius V., Šarauskis E. Impact of seedbed density on sugar beet (Beta vulgaris L.) seed germination, yield and quality of roots. Journal of Food, Agriculture & Environment. 2010. 8 (2). Pp. 599–601.

12. Chen Y., Tessier S., Irvine B. Drill and crop performances as affected by different drill configurations for no-till seeding. Soil & Tillage Research. 2004. 77 (2). Pp. 147–155.

13. Van Oost K., Cerdan O., Quine T. A. Accelerated sediment fluxes by water and tillage erosion on European agricultural land. Earth Surface Processes and Landforms. 2009. 34. Pp. 1625–1634.

14. Doan V., Chen Y., Irvine B. Effect of residue type on the performance of no-till seeder openers. Canadian Biosystems Engineering. 2005. 47. Pp. 29–35.

15. Kushwaha R.L., Vaishnav A.S., Zoerb G.C. Soil bin evaluation of disc coulter under no-till crop residue conditions. Transactions of ASAE. 1986. 29 . Pp. 40–44.

16. Hemmat A., AdamchukV.I., Jasa P. Use of an instrumented disc coulter for mapping soil mechanical resistance. Soil & Tillage Research. 2008. 98. Pp. 150–163.

17. Fallahi S.,Raoufat M.H. Row-crop planter attachments in a conservation tillage system: A comparative study. Soil & Tillage Research. 2008. 98 . Pp. 27–34.

18. Karayel D. Performance of a modified precision vacuum seeder for no-till sowing of maize and soybean. Soil & Tillage Research. 2009. 104. Pp. 121–125.

Copyright (c) 2023 Maksym Zayets