DOI: https://doi.org/10.32515/2414-3820.2024.54.136-141
Laser Strengthening of Automobile Transport Parts in the Agro-industrial Complex
About the Authors
Yuriy Kovalchuk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Uman National University of Horticulture, Uman, Ukraine, e-mail: temp14053@gmail.com
Ivan Lisovyi, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Uman National University of Horticulture, Uman, Ukraine, e-mail: lisov.iv.ol@gmail.com, ORCID ID: 0000-0003-1480-1805
Abstract
The purpose of the work is to determine the effect of laser processing on the microhardness of the zones of ductile cast iron KCh60-3 when it is strengthened by a defocused laser beam and a beam with transverse oscillations. It is also necessary to establish the dependence of friction coefficients on the sliding speed of friction pairs 40H-SCh20 and to determine for these friction pairs the dependence of the intensity of wear on the density of the laser energy flow during the processing of the studied samples.
Laser hardening of ductile cast iron KCh60-3 with a defocused beam at a scanning speed of less than
7 mm/s led to shell-type defects and inflows on the surface of the samples. Transverse oscillations of the beam made it possible to exclude similar defects and vary the depth of the solidification zones from the liquid state in the range of 10–800 μm. The maximum depth and width of the hardening zones of cast iron KCh60-3 were
1.8 mm and 11.7 mm respectively. The maximum microhardness values of 12100 MPa were obtained in the remelting zone during processing with transverse beam oscillations. The microstructure of the melting zone is an austenitic-martensitic mixture. A decrease in friction coefficients was observed for all samples up to a sliding speed of 1.5 m/s. The maximum friction coefficients of 0.13–0.145 were obtained for the base material SCh20 with a hardness of 180–210 НВ. The minimum values of friction coefficients of 0.07-0.09 were obtained on samples processed at a laser flux energy density of 46 J/mm2.
The obtained results showed that during laser processing of cast iron the microhardness of the hardened layers significantly increases compared to the base material. The developed technology of laser hardening with the use of transverse oscillations of the beam has a higher productivity than when hardening with a defocused beam. Laser hardening of gray cast iron SCh20 and malleable cast iron KCh60-3 using transverse oscillations of the laser beam made it possible to increase processing productivity by 1.5–2.0 times. When using I-20 industrial oil, the increase in energy density during laser hardening of SCh20 cast iron leads to an increase in its wear resistance by 2.5–3.5 times and reduces frictional losses in a pair with 40H steel by 30–60%.
Keywords
laser hardening, tempering, microhardness, wear intensity, road transport details in the agro-industrial complex
Full Text:
PDF
References
1. Afanasyeva, O.V., Lalazarova, N.O. & Fedorenko, YE.P. (2020). Lazerna poverkhneva obrobka materialiv: monohrafiya [Laser surface treatment of materials: monograph]. Kharkiv : FOP Panov A.M. [in Ukrainian].
2. Zhang, X., Zhang, Y., Yin, Y., Zhang, Y., Li, S., Duan, S., Huang, Z., Chen, B., Pei, S. & Wang H. (2017). Simulation of the forming process of conical cup shaped by laser-induced shock waves. The International Journal of Advanced Manufacturing Technology, 91, 1619–1630. DOI: https://doi.org/10.1007/s00170-016-9633-x [in English].
3. Tokarev, A., Bataeva, Z., Grachev, G., Smirnov, A., Khomyakov, M. & Gerber, A. (2015). Laser-plasma treatment of structural steel. Applied Mechanics and Materials, Vol. 788, 58–62 [in English].
4. Aulin, V.V., Lysenko, S.V., Zhylova, I.V. & Verbytskyy, O.V. Rafinuyucho-lehuvalni diyi na poverkhnevyy shar materialu detaley system i ahrehativ transportnykh zasobiv lazernoho potoku enerhiyi [Refining and alloying effects on the surface layer of the material of parts of systems and units of vehicles of laser energy flow]. Proceedings from Increasing the reliability of machines and equipment '20: mizhnar. nauk.-prakt. konf. (15-17 kvit. 2020 r.) – Int. Sci. And Pract. Conf. (p. 91). Kropyvnytskyy : TSNTU [in Ukrainian].
5. Kovalchuk, Yu.O., Pushka, O.S. & Voytik, A.V. (2023). Zastosuvannya lehuyuchykh materialiv ta pohlynayuchykh pokryttiv pry lazernomu zmitsnenni detaley avtomobilnoho transportu [Application of alloying materials and absorbing coatings during laser strengthening of automobile parts]. Silsko-hospodarski mashyny – Agricultural machinery, issue 49, 99–104. DOI: https://doi.org/10.36910/acm.vi49.1026 [in Ukrainian].
6. Lesyk, D.A., Hrushka, M., Sidun, K.YU., Danyleyko, O.O., Kyforenko, D.S. & Dzhemelinskyy, V.V. (2022). Selektyvne poverkhneve zmitsnennya valu mekhanizmu peredach robotyzovanoyu lazernoyu 3D systemoyu [Selective surface strengthening of the gear mechanism shaft by a robotic laser 3D system]. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI». Seriya: Novi rishennya u suchasnykh tekhnolohiyakh – Bulletin of the National Technical University «KhPI». Series: New solutions in modern technologies, 3 (13), 24–29. DOI: https://doi.org/10.20998/2413-4295.2022.03.04 [in Ukrainian].
7. Rutkowski, D. & Ambroziak, A. (2014). Effect of laser strengthening on the mechanical properties of car body steels presently used in automotive industry. Biuletyn Instytutu Spawalnictwa, 5, 49–57 [in English].
8. Kovalchuk, Yu.O., Kravchenko, V.V. & Olyadnichuk, R.V. (2017). Lazerna obrobka detaley silskohospodarskoyi tekhniky z chavunu [Laser processing of parts of agricultural machinery from cast iron]. Visnyk Ukrayinskoho viddilennya Mizhnarodnoyi akademiyi ahrarnoyi osvity – Bulletin of the Ukrainian branch of the International Academy of Agrarian Education, issue 5, 92–99 [in Ukrainian].
9. Zavoiko, O.S. (2014). Doslidzhennia lazernoho zmitsnennia kolinchatykh valiv ta mekhaniko-termichnoi obrobky pry ruinuvanni na vtomu ta znos [Investigation of laser hardening of crankshafts and mechanical-thermal treatment in case of fatigue and wear destruction]. Fizyka i khimiia tverdoho tila – Physics and Chemistry of the Solid State, Vol. 15, 4, 846–855 [in Ukrainian].
10. Dobras, D. & Rutkowska-Gorczyca, M. (2019). The use of color etching to study the micro-structure of laser welded steel used in the automotive industry. Materials Testing, 61 (11), 1087–1094. DOI: https://doi.org/10.3139/120.111424 [in English].
11. Kovalchuk, Yu.O., Pushka, O.S., Voytik, A.V. & Kovalchuk, A.O. (2022). Pidvyshchennya znosostiykosti detaley avtomobilnoho transportu v APK shlyakhom zastosuvannya lazernoho naplavlennya [Increasing the wear resistance of motor vehicle parts in the agricultural sector by using laser surfacing]. Tekhnika, enerhetyka, transport APK – Technology, energy, transport of agricultural industry, 1 (116), 25–31 [in Ukrainian].
12. Xu, L., Li, M., Song, Z., Li, F., Guo, J. & Gao, M. (2022). WC-High Entropy Alloy Reinforced Long Life Self-Grinding Silage Knife Prepared by Laser Cladding. Nanomaterials, 12(6), 1013. DOI: https://doi.org/10.3390/nano12061013 [in English].
Citations
1. Афанасьєва О.В., Лалазарова Н.О., Федоренко Є.П. Лазерна поверхнева обробка матеріалів : монографія. Харків : ФОП Панов А.М., 2020. 100 с.
2. Zhang X., Zhang Y., Yin Y., Zhang Y., Li S., Duan S., Huang Z., Chen B., Pei S., Wang H. Simulation of the forming process of conical cup shaped by laser-induced shock waves. The International Journal of Advanced Manufacturing Technology. 2017. Vol. 91. P. 1619–1630. DOI: https://doi.org/10.1007/s00170-016-9633-x
3. Laser-plasma treatment of structural steel / A. Tokarev et al. Applied Mechanics and Materials. 2015. Vol. 788. P. 58–62.
4. Аулін В.В., Лисенко С.В., Жилова І.В., Вербицький О.В. Рафінуючо-легувальні дії на поверхневий шар матеріалу деталей систем і агрегатів транспортних засобів лазерного потоку енергії. Підвищення надійності машин і обладнання : матеріали міжнар. наук.-практ. конф., 15-17 квіт. 2020 р. Кропивницький : ЦНТУ, 2020. С. 91.
5. Ковальчук Ю.О., Пушка О.С., Войтік А.В. Застосування легуючих матеріалів та поглинаючих покриттів при лазерному зміцненні деталей автомобільного транспорту. Сільськогосподарські машини. 2023. Вип. 49. С. 99–104. DOI: https://doi.org/10.36910/acm.vi49.1026
6. Лесик Д.А., Грушка М., Сідун К.Ю., Данилейко О.О., Кифоренко Д.С., Джемелінський В.В. Селективне поверхневе зміцнення валу механізму передач роботизованою лазерною 3D системою. Вісник Національного технічного університету «ХПІ». Серія: Нові рішення у сучасних технологіях. 2022. № 3 (13). 24–29. DOI: https://doi.org/10.20998/2413-4295.2022.03.04
7. Rutkowski, D., Ambroziak, A. Effect of laser strengthening on the mechanical properties of car body steels presently used in automotive industry. Biuletyn Instytutu Spawalnictwa. 2014. № 5, 49–57.
8. Ковальчук Ю.О., Кравченко В.В., Оляднічук Р.В. Лазерна обробка деталей сільськогосподарської техніки з чавуну. Вісник Українського відділення Міжнародної академії аграрної освіти. 2017. Вип. 5. С. 92–99.
9. Завойко О.С. Дослідження лазерного зміцнення колінчатих валів та механіко-термічної обробки при руйнуванні на втому та знос. Фізика і хімія твердого тіла. 2014. Т. 15. № 4. С. 846–855.
10. Dobras D., Rutkowska-Gorczyca M. The use of color etching to study the microstructure of laser welded steel used in the automotive industry. Materials Testing. 2019. Vol. 61(11). P. 1087–1094. DOI: https://doi.org/10.3139/120.111424
11. Ковальчук Ю.О., Пушка О.С., Войтік А.В., Ковальчук А.О. Підвищення зносостійкості деталей автомобільного транспорту в АПК шляхом застосування лазерного наплавлення. Техніка, енергетика, транспорт АПК. 2022. № 1 (116). С. 25–31.
12. Xu L., Li M., Song Z., Li F., Guo J., Gao M. WC-High Entropy Alloy Reinforced Long Life Self-Grinding Silage Knife Prepared by Laser Cladding. Nanomaterials. 2022. Vol. 12(6). 1013. DOI: https://doi.org/10.3390/nano12061013
Copyright (c) 2024 Yuriy Kovalchuk, Ivan Lisovyi
Laser Strengthening of Automobile Transport Parts in the Agro-industrial Complex
About the Authors
Yuriy Kovalchuk, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Uman National University of Horticulture, Uman, Ukraine, e-mail: temp14053@gmail.com
Ivan Lisovyi, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Uman National University of Horticulture, Uman, Ukraine, e-mail: lisov.iv.ol@gmail.com, ORCID ID: 0000-0003-1480-1805
Abstract
The purpose of the work is to determine the effect of laser processing on the microhardness of the zones of ductile cast iron KCh60-3 when it is strengthened by a defocused laser beam and a beam with transverse oscillations. It is also necessary to establish the dependence of friction coefficients on the sliding speed of friction pairs 40H-SCh20 and to determine for these friction pairs the dependence of the intensity of wear on the density of the laser energy flow during the processing of the studied samples. Laser hardening of ductile cast iron KCh60-3 with a defocused beam at a scanning speed of less than 7 mm/s led to shell-type defects and inflows on the surface of the samples. Transverse oscillations of the beam made it possible to exclude similar defects and vary the depth of the solidification zones from the liquid state in the range of 10–800 μm. The maximum depth and width of the hardening zones of cast iron KCh60-3 were 1.8 mm and 11.7 mm respectively. The maximum microhardness values of 12100 MPa were obtained in the remelting zone during processing with transverse beam oscillations. The microstructure of the melting zone is an austenitic-martensitic mixture. A decrease in friction coefficients was observed for all samples up to a sliding speed of 1.5 m/s. The maximum friction coefficients of 0.13–0.145 were obtained for the base material SCh20 with a hardness of 180–210 НВ. The minimum values of friction coefficients of 0.07-0.09 were obtained on samples processed at a laser flux energy density of 46 J/mm2. The obtained results showed that during laser processing of cast iron the microhardness of the hardened layers significantly increases compared to the base material. The developed technology of laser hardening with the use of transverse oscillations of the beam has a higher productivity than when hardening with a defocused beam. Laser hardening of gray cast iron SCh20 and malleable cast iron KCh60-3 using transverse oscillations of the laser beam made it possible to increase processing productivity by 1.5–2.0 times. When using I-20 industrial oil, the increase in energy density during laser hardening of SCh20 cast iron leads to an increase in its wear resistance by 2.5–3.5 times and reduces frictional losses in a pair with 40H steel by 30–60%.Keywords
Full Text:
PDFReferences
1. Afanasyeva, O.V., Lalazarova, N.O. & Fedorenko, YE.P. (2020). Lazerna poverkhneva obrobka materialiv: monohrafiya [Laser surface treatment of materials: monograph]. Kharkiv : FOP Panov A.M. [in Ukrainian].
2. Zhang, X., Zhang, Y., Yin, Y., Zhang, Y., Li, S., Duan, S., Huang, Z., Chen, B., Pei, S. & Wang H. (2017). Simulation of the forming process of conical cup shaped by laser-induced shock waves. The International Journal of Advanced Manufacturing Technology, 91, 1619–1630. DOI: https://doi.org/10.1007/s00170-016-9633-x [in English].
3. Tokarev, A., Bataeva, Z., Grachev, G., Smirnov, A., Khomyakov, M. & Gerber, A. (2015). Laser-plasma treatment of structural steel. Applied Mechanics and Materials, Vol. 788, 58–62 [in English].
4. Aulin, V.V., Lysenko, S.V., Zhylova, I.V. & Verbytskyy, O.V. Rafinuyucho-lehuvalni diyi na poverkhnevyy shar materialu detaley system i ahrehativ transportnykh zasobiv lazernoho potoku enerhiyi [Refining and alloying effects on the surface layer of the material of parts of systems and units of vehicles of laser energy flow]. Proceedings from Increasing the reliability of machines and equipment '20: mizhnar. nauk.-prakt. konf. (15-17 kvit. 2020 r.) – Int. Sci. And Pract. Conf. (p. 91). Kropyvnytskyy : TSNTU [in Ukrainian].
5. Kovalchuk, Yu.O., Pushka, O.S. & Voytik, A.V. (2023). Zastosuvannya lehuyuchykh materialiv ta pohlynayuchykh pokryttiv pry lazernomu zmitsnenni detaley avtomobilnoho transportu [Application of alloying materials and absorbing coatings during laser strengthening of automobile parts]. Silsko-hospodarski mashyny – Agricultural machinery, issue 49, 99–104. DOI: https://doi.org/10.36910/acm.vi49.1026 [in Ukrainian].
6. Lesyk, D.A., Hrushka, M., Sidun, K.YU., Danyleyko, O.O., Kyforenko, D.S. & Dzhemelinskyy, V.V. (2022). Selektyvne poverkhneve zmitsnennya valu mekhanizmu peredach robotyzovanoyu lazernoyu 3D systemoyu [Selective surface strengthening of the gear mechanism shaft by a robotic laser 3D system]. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI». Seriya: Novi rishennya u suchasnykh tekhnolohiyakh – Bulletin of the National Technical University «KhPI». Series: New solutions in modern technologies, 3 (13), 24–29. DOI: https://doi.org/10.20998/2413-4295.2022.03.04 [in Ukrainian].
7. Rutkowski, D. & Ambroziak, A. (2014). Effect of laser strengthening on the mechanical properties of car body steels presently used in automotive industry. Biuletyn Instytutu Spawalnictwa, 5, 49–57 [in English].
8. Kovalchuk, Yu.O., Kravchenko, V.V. & Olyadnichuk, R.V. (2017). Lazerna obrobka detaley silskohospodarskoyi tekhniky z chavunu [Laser processing of parts of agricultural machinery from cast iron]. Visnyk Ukrayinskoho viddilennya Mizhnarodnoyi akademiyi ahrarnoyi osvity – Bulletin of the Ukrainian branch of the International Academy of Agrarian Education, issue 5, 92–99 [in Ukrainian].
9. Zavoiko, O.S. (2014). Doslidzhennia lazernoho zmitsnennia kolinchatykh valiv ta mekhaniko-termichnoi obrobky pry ruinuvanni na vtomu ta znos [Investigation of laser hardening of crankshafts and mechanical-thermal treatment in case of fatigue and wear destruction]. Fizyka i khimiia tverdoho tila – Physics and Chemistry of the Solid State, Vol. 15, 4, 846–855 [in Ukrainian].
10. Dobras, D. & Rutkowska-Gorczyca, M. (2019). The use of color etching to study the micro-structure of laser welded steel used in the automotive industry. Materials Testing, 61 (11), 1087–1094. DOI: https://doi.org/10.3139/120.111424 [in English].
11. Kovalchuk, Yu.O., Pushka, O.S., Voytik, A.V. & Kovalchuk, A.O. (2022). Pidvyshchennya znosostiykosti detaley avtomobilnoho transportu v APK shlyakhom zastosuvannya lazernoho naplavlennya [Increasing the wear resistance of motor vehicle parts in the agricultural sector by using laser surfacing]. Tekhnika, enerhetyka, transport APK – Technology, energy, transport of agricultural industry, 1 (116), 25–31 [in Ukrainian].
12. Xu, L., Li, M., Song, Z., Li, F., Guo, J. & Gao, M. (2022). WC-High Entropy Alloy Reinforced Long Life Self-Grinding Silage Knife Prepared by Laser Cladding. Nanomaterials, 12(6), 1013. DOI: https://doi.org/10.3390/nano12061013 [in English].
Citations
1. Афанасьєва О.В., Лалазарова Н.О., Федоренко Є.П. Лазерна поверхнева обробка матеріалів : монографія. Харків : ФОП Панов А.М., 2020. 100 с.
2. Zhang X., Zhang Y., Yin Y., Zhang Y., Li S., Duan S., Huang Z., Chen B., Pei S., Wang H. Simulation of the forming process of conical cup shaped by laser-induced shock waves. The International Journal of Advanced Manufacturing Technology. 2017. Vol. 91. P. 1619–1630. DOI: https://doi.org/10.1007/s00170-016-9633-x
3. Laser-plasma treatment of structural steel / A. Tokarev et al. Applied Mechanics and Materials. 2015. Vol. 788. P. 58–62.
4. Аулін В.В., Лисенко С.В., Жилова І.В., Вербицький О.В. Рафінуючо-легувальні дії на поверхневий шар матеріалу деталей систем і агрегатів транспортних засобів лазерного потоку енергії. Підвищення надійності машин і обладнання : матеріали міжнар. наук.-практ. конф., 15-17 квіт. 2020 р. Кропивницький : ЦНТУ, 2020. С. 91.
5. Ковальчук Ю.О., Пушка О.С., Войтік А.В. Застосування легуючих матеріалів та поглинаючих покриттів при лазерному зміцненні деталей автомобільного транспорту. Сільськогосподарські машини. 2023. Вип. 49. С. 99–104. DOI: https://doi.org/10.36910/acm.vi49.1026
6. Лесик Д.А., Грушка М., Сідун К.Ю., Данилейко О.О., Кифоренко Д.С., Джемелінський В.В. Селективне поверхневе зміцнення валу механізму передач роботизованою лазерною 3D системою. Вісник Національного технічного університету «ХПІ». Серія: Нові рішення у сучасних технологіях. 2022. № 3 (13). 24–29. DOI: https://doi.org/10.20998/2413-4295.2022.03.04
7. Rutkowski, D., Ambroziak, A. Effect of laser strengthening on the mechanical properties of car body steels presently used in automotive industry. Biuletyn Instytutu Spawalnictwa. 2014. № 5, 49–57.
8. Ковальчук Ю.О., Кравченко В.В., Оляднічук Р.В. Лазерна обробка деталей сільськогосподарської техніки з чавуну. Вісник Українського відділення Міжнародної академії аграрної освіти. 2017. Вип. 5. С. 92–99.
9. Завойко О.С. Дослідження лазерного зміцнення колінчатих валів та механіко-термічної обробки при руйнуванні на втому та знос. Фізика і хімія твердого тіла. 2014. Т. 15. № 4. С. 846–855.
10. Dobras D., Rutkowska-Gorczyca M. The use of color etching to study the microstructure of laser welded steel used in the automotive industry. Materials Testing. 2019. Vol. 61(11). P. 1087–1094. DOI: https://doi.org/10.3139/120.111424
11. Ковальчук Ю.О., Пушка О.С., Войтік А.В., Ковальчук А.О. Підвищення зносостійкості деталей автомобільного транспорту в АПК шляхом застосування лазерного наплавлення. Техніка, енергетика, транспорт АПК. 2022. № 1 (116). С. 25–31.
12. Xu L., Li M., Song Z., Li F., Guo J., Gao M. WC-High Entropy Alloy Reinforced Long Life Self-Grinding Silage Knife Prepared by Laser Cladding. Nanomaterials. 2022. Vol. 12(6). 1013. DOI: https://doi.org/10.3390/nano12061013