DOI: https://doi.org/10.32515/2414-3820.2024.54.24-35

Improvement of the Technology for Manufacturing Samples From High-Strength Cast Steel 110G13L for Metallographic research and Testing

Oleh Sisa, Volodymyr Mirzak, Victor Pukalov, Olexandr Dovzhuk, Denys Tupalenko

About the Authors

Oleh Sisa, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: sisaoleh@gmail.com, ORCID ID: 0000-0002-4783-100X

Volodymyr Mirzak, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: mirzak.moodle@gmail.com, ORCID ID: 0000-0002-4167-7291

Victor Pukalo, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: pukalovvictor@gmail.com, ORCID ID: 0000-0002-0848-5861

Olexandr Dovzhuk, post-graduat, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID ID: 0000-0002-3725-6232

Denys Tupalenko, post-graduat, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine

Abstract

Typically, armor cones for mills that crush rock are made of high-strength Hadfield foundry steel grade 110G13L. Since these parts are critical and expensive, square-section core samples are made from each casting from the casting for further research, in order to check for operability. The production of core samples from cast steel 110G13L is associated with certain technical difficulties. This steel is characterized by its high wear resistance combined with high strength, ductility and impact toughness. That is why this steel can be attributed to materials that are difficult to machine. Of certain practical interest is the use of electrical discharge machining for the manufacture of samples, which is capable of machining any electrically conductive material regardless of its physical properties. Of the three known methods of electrical discharge machining, the most productive is the method of dimensional machining of metals by electric arc (abbreviated as DMA). When implementing the DMA method, the process is carried out by an electric arc, which burns continuously (without pauses) between the electrode-tool and the electrode-workpiece being machined. In the processing process, the hydrodynamic mode of the working fluid performs a triple function: it determines the energy state of the arc, determines the geometric state of the electric arc as a tool for dimensional processing of various surfaces and is responsible for the process of intensive removal of erosion products from the arc combustion zone, which provides the prerequisites for stabilizing the surface processing process. However, the process of DMA of square rods, to which samples from 110G13L cast steel belong, was not the object of research, and therefore the effective electrical and hydrodynamic modes and technological characteristics of processing are unknown, which limits its technological capabilities. Therefore, in order to be able to control the process of DMA of square rods, it is necessary to experimentally establish the relationship between the factors determining the processing mode and the initial technological characteristics. The aim of the research is to build mathematical models of the technological characteristics of the DMA process of square rods made of 110G13L cast steel. The work obtained mathematical models of the DMA process of these samples, which allow controlling the processing productivity, specific processing productivity, specific electricity consumption, roughness of the processed surface, as well as the lateral interelectrode gap and relative linear wear of the graphite electrode-tool. It is shown that the use of DMA technology of samples, compared with their electric pulse processing, allows increasing the processing productivity by 8-10 times.

Keywords

steel 110G13L, electric arc, hydrodynamic flow, technological equipment, technological characteristics

Full Text:

PDF

References

1. Buhay, L.A. (2023). Reducing the complexity of machining products made of high-manganese steels. Hirnychyy visnyk, 111, 83–89 [in Ukrainian].

2. Khilʹchevsʹkyy, V.V., Kondratyuk, S.Ye., Stepanenko, V.O. & Lopatʹko, K.H. (2002). Materials science and technology of structural materials. Kyiv: Lybidʹ [in Ukrainian].

3. Sisa, O .F. & Nosulenko V.I . (2005). An alternative method for processing high-strength, wear-resistant materials. Visnyk Kremenchutsʹkoho derzhavnoho politekhnichnoho universytetu, 6, 136–138 [in Ukrainian].

4. Uzlov, K . I., Movchan, O. M., Chernysh, Т. О. & Sapunov, Yu. M. (2018). Analiz normatyvnykh vymoh do VM-stali ta rozrobka metodyky mikrostrukturnoho kontrolyu zerennohranychnykh yiyi kharakterystyk. Teoriya i praktyka metalurhiyi, 3–5, 56–59 [in Ukrainian].

5. Mazur, M.P., Vnukov, Yu.M., Dobroskok, V.L., Zaloha, V.O., Novosʹolov, Yu.K., & Yakubov, F.Ya. (2002). Fundamentals of material cutting theory (2th ed.). Lʹviv : Novyy svit 2000 [in Ukrainian].

6. Kamenskikh, A.A., Muratov, K.R., Shlykov, E.S., Sidhu, S.S., Mahajan, A., Kuznetsova, Y.S. & Ablyaz, T.R. (2023). Recent trends and developments in the Electrical Discharge Machining Industry: A review. J. Manuf. Mater. Process. 7, 204. https://doi.org/10.3390/jmmp7060204 [in English].

7. Nugroho, B., Yahya, A ., Mat Sidek, A. R., Andromeda, T. & Khamis, N. H. (2020). Current Pulse Generated by Spark of Electrical Discharge Machining (EDM). IOP Conference Series: Journel of Phisics. IOP Publishing, 1529:042109. doi:10.1088/1742-6596/1529/4/042109 [in English].

8. Lu, B., Tang, K., Wu, M.X., Yang, Y. & Yang, G. (2024). Mechanism of electropulsing treatment technology for flow stress of metal material: A review. Alloys. 3(1), 96–125. https://doi.org/10.3390/alloys3010006 [in English].

9. Bokov, V.M. (2002). Dimensional shaping of surfaces by an electric arc. Kirovohrad: Polihrafichno-vydavnychyi tsentr TOV «Imeks LTD» [in Ukrainian].

10. Bokov, V.M. & Sisa, O.F. (2013). Obrobliuvanist materialiv elektrychnoiu duhoiu [Processing of materials with an electric arc]. Kirovohrad: Polihrafichno-vydavnychyi tsentr TOV «Imeks LTD» [in Ukrainian].

11. Nosulenko, V.I. (1999). Dimensional processing of metals with an electric arc. Extended abstract of doctor's thesis. Kyiv : NTUU «KPI» [in Ukrainian].

Citations

1. Бугай Л. А. Зниження трудомісткості механічної обробки продукції з високомарганцевих сталей. Гірничий вісник : зб. наук. праць, 2023. Вип.111. С. 83–89.

2. Матеріалознавство і технологія конструкційних матеріалів / Хільчевський В.В., Кондратюк С.Є., Степаненко В.О., Лопатько К.Г. К.: Либідь, 2002. С.328.

3. Сіса О. Ф., Носуленко В. І. Альтернативний спосіб обробки високоміцних зносостійкість матеріалів . Вісник Кременчуцького державного політехнічного університету, 2005. Вип.6. С. 136–138.

4. Аналіз нормативних вимог до ВМ-сталі та розробка методики мікроструктурного контролю зереннограничних її характеристик / К. І. Узлов, О. М. Мовчан, Т. О. Черниш, Ю. М. Сапунов, Г. В. Теорія і практика металургії : заг. держ. наук. журн., 2018. №3–5. С. 56–59.

5. Основи теорії різання матеріалів : підручник [для вищ. навч. закладів] / М.П.Мазур, Ю.М.Внуков, В.Л.Доброскок та ін.; під заг. ред.. М.П.Мазура. 2-е вид. перероб. і доп. Львів : Новий світ 2000, 2001. С.422.

6. Kamenskikh, A.A., Muratov, K.R., Shlykov, E.S., Sidhu, S.S., Mahajan, A., Kuznetsova, Y.S., Ablyaz, T.R.: Recent trends and developments in the Electrical Discharge Machining Industry: A review. J. Manuf. Mater. Process. 7, 204 (2023), p. 204. https://doi.org/10.3390/jmmp7060204.

7. Nugroho, B., Yahya, A ., Mat Sidek, A. R., Andromeda, T., Khamis, N. H., Current Pulse Generated by Spark of Electrical Discharge Machining (EDM). IOP Conference Series: Journel of Phisics, 2020. IOP Publishing, 1529:042109. doi:10.1088/1742-6596/1529/4/042109.

8. Lu, B., Tang, K., Wu, M.X., Yang, Y., Yang, G.: Mechanism of electropulsing treatment technology for flow stress of metal material: A review. Alloys 2024, Vol. 3(1), pp. 96–125. https://doi.org/10.3390/alloys3010006.

9. Боков В. М. Розмірне формоутворення поверхонь електричною дугою. Кіровоград : Поліграфічно-видавничий центр ТОВ «Імеkc ЛТД», 2002. 300 с.

10. Боков В. М., Сіса О. Ф. Оброблюваність матеріалів електричною дугою. Кіровоград : Поліграфічно-видавничий центр ТОВ «Імеkc ЛТД», 2013. 172 с.

11. Носуленко В. І. Розмірна обробка металів електричною дугою : автореф. дис. … д-ра техн. наук: 05.03.07 / НТУУ «КПІ». Київ, 1999. 36 с.

Copyright (c) 2024 Oleh Sisa, Volodymyr Mirzak, Victor Pukalov, Olexandr Dovzhuk, Denys Tupalenko