DOI: https://doi.org/10.32515/2414-3820.2024.54.185-192
Agrobot for Inter-Row Cultivation of Row Crops
About the Authors
Kateryna Vasylkovska, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: vasilkovskakv@ukr.net, ORCID ID: 0000-0002-3524-4027
Serhii Moroz, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: serhii_moroz@ukr.net, ORCID ID: 0000-0001-5101-8460
Olha Andriienko, Associate Professor, PhD in Agricultural (Candidate of Agricultural Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: andrienko2277@gmail.com, ORCID ID: 0000-0002-0953-8347
Mykhailo Vasylkovskyi, student, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID ID: 0000-0001-9590-742X
Abstract
Throughout the history of agriculture, farming has evolved from simple hand tools and animal-drawn machines to sophisticated automated equipment. One of the most promising technological solutions in agricultural production is the use of agricultural robots to ensure a high-quality and timely technological process. Agricultural robots are smart robots that can be controlled by various programs and software adapted to different technological operations. Bringing intelligence to agriculture, while increasing the efficiency and sustainability of agricultural production, ensures a future in which food is produced with minimal environmental damage.
The purpose of this article is to analyze the existing designs of agricultural robots for inter-row tillage, weed control, and spraying in the inter-row.
All of the analyzed designs of agricultural robots provide high-quality performance of one or more technological processes. However, there is one huge disadvantage: they are very expensive. In times of war, not all agricultural producers can afford such a device.
The functional capabilities of agricultural robots for inter-row tillage, weed control and spraying were analyzed. Their advantages and disadvantages are analyzed. The design of an agricultural robot is proposed to ensure high-quality work in the row spacing of row crops. Also, to unify the work of the agro-robot on one body, it is possible to create designs of various variations of the agro-robot, such as a transport unit and an intelligent sprayer.
The intellectualization of agriculture is moving towards enabling existing machines to work autonomously and without human intervention. The level of complexity of work that can be performed by agricultural robots is increasing. Agricultural robots, as the latest technology for agricultural production, not only save labor costs, but also improve quality control capabilities and increase the ability to withstand natural risks. Therefore, the proposed design of a simple and reliable agricultural robot to ensure high-quality work in the rows of row crops is a relevant and timely solution for agricultural production in our country.
Keywords
agricultural robot, inter-row cultivation, weed control, spraying, design
Full Text:
PDF
References
1. Vasylkovska, K.V. (2024). System analysis of agricultural robots in agricultural production. Ahrarni innovatsii, 24. 31-36. (DOI: https://doi.org/10.32848/agrar.innov.2024.24.4) [in Ukrainian]
2. Vasylkovska, K.V., Leshchenko, S.M., Vasylkovskyi, O.M., & Petrenko, D.I. (2016). Improvement of equipment for basic tillage and sowing as initial stage of harvest forecasting. INMATEH - Agricultural Engineering, 50(3). 13-20.
3. Bilinska, V. (2015). Modern innovative technologies in agriculture: main characteristics and prospects for implementation. Visnyk Kyivskoho natsionalnoho universytetu imeni T. Shevchenka: Ekonomika, 7 (172). 74-80. (DOI: https://dx.doi.org/10.17721/1728-2667.2015/172-7/11) [in Ukrainian]
4. Vasylkovska, K.V., Andriienko, O.O., & Shepilova, T.P. (2023). Efficiency of agrodrones in the precision farming system. Ahrarni innovatsii. 16. 13-18. DOI: https://doi.org/10.32848/agrar.innov.2023.17.2 [in Ukrainian]
5. Vasylkovska, K.V., Andriienko, O.O., & Malakhovska, V.O. (2023). Analysis of the effectiveness of agrodrones for the introduction of technological materials in the system of precision agriculture. Konstruiuvannia, vyrobnytstvo ta ekspluatatsiia silskohospodarskykh mashyn – Design, manufacture and operation of agricultural machinery, 53. 131-138. DOI: https://doi.org/10.32515/2414-3820.2023.53.131-138 [in Ukrainian]
6. Komitov, G., Mitkov, I., Harizanov, V., Neshev, N., & Yanev, M. (2020). Justification of Agrotechnical Indicators of Agrorobot. 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE). DOI: https://doi.org/10.1109/EEAE49144.2020.9279046
7. Blackmore, S., Stout, B., Wang, M. & Runov, B. (2005). Robotic agriculture – the future of agricultural mechanisation? Precision Agriculture, 5. 621–628. DOI: https://doi.org/10.3920/978-90-8686-549-9_077
8. Santos, Valle, S. & Kienzle, J. (2021). Agriculture 4.0: Robotique agricole et matériel automatisé au service d’une. https://www.naio-technologies.com/wp-content/uploads/2016/02/naoi-oz-lafranceagricole.fr_.jpg 05.10.2024
9. Nazemnyi dron XAG R150 2022 XAUV Spray Model Ground drone XAG R150 2022 XAUV Spray Model. HektarUA. https://hectare.ua/internet-magazin/product/view/681/1382638 [in Ukrainian]
10. ROBOTTI LR. FarmConcepts. https://farmconcepts.com.au/solutions/autonomous/robotti/
11. Fendt improves innovative agricultural robot Xaver. TRAKTORIST.UA. https://traktorist.ua/news/fendt-udoskonaliv-innovaciynogo-agrorobota-xaver/ 08.11.2024 [in Ukrainian]
12. Bosch multifunctional agricultural robot to be put into mass production. (2024). KURKUL: onlain asystent fermera. https://kurkul.com/news/11500-bagatofunktsionalnogo-agrorobota-bosch-zapustyat-u-seriyne-virobnitstvo 08.11.2024 [in Ukrainian]
Citations
1. Васильковська К.В. Системний аналіз агророботів в сільськогосподарському виробництві. Аграрні інновації. – Херсон: Видавничий дім «Гельветика», 2024. – Вип. 24. С. 31-36. (DOI: https://doi.org/10.32848/agrar.innov.2024.24.4)
2. Vasylkovska K.V., Leshchenko S.M., Vasylkovskyi O.M., Petrenko D.I. Improvement of equipment for basic tillage and sowing as initial stage of harvest forecasting. INMATEH - Agricultural Engineering. 2016. Vol. 50(3). P. 13-20.
3. Білінська В. Сучасні інноваційні технології в сільському господарстві: основна характеристика та перспективи впровадження. Вісник Київського національного університету імені Т. Шевченка: Економіка. 2015. Вип. 7 (172). С. 74-80. (DOI: https://dx.doi.org/10.17721/1728-2667.2015/172-7/11)
4. Васильковська К.В., Андрієнко О.О., Шепілова Т.П. Ефективність агродронів в системі точного землеробства. Аграрні інновації. – Херсон: Видавничий дім «Гельветика». 2023. Вип. 16. С. 13-18. (DOI: https://doi.org/10.32848/agrar.innov.2023.17.2)
5. Васильковська К.В., Андрієнко О.О., Малаховська В.О. Аналіз ефективності агродронів для внесення технологічних матеріалів в системі точного землеробства. Конструювання, виробництво та експлуатація сільськогосподарських машин. Загальнодержавний міжвідомчий науково-технічний збірник. – Кропивницький: ЦНТУ. Вип. 53. 2023. C. 131-138. (DOI: https://doi.org/10.32515/2414-3820.2023.53.131-138)
6. Komitov G., Mitkov I., Harizanov V., Neshev N., Yanev M. Justification of Agrotechnical Indicators of Agrorobot. 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), 2020. (DOI: https://doi.org/10.1109/EEAE49144.2020.9279046)
7. Blackmore S., Stout B., Wang M. & Runov B. Robotic agriculture – the future of agricultural mechanisation? Precision Agriculture, 5. 2000. рр. 621–628. (DOI: https://doi.org/10.3920/978-90-8686-549-9_077)
8. Santos Valle, S. et Kienzle, J. Agriculture 4.0: Robotique agricole et matériel automatisé au service d’une. 2021. URL: https://www.naio-technologies.com/wp-content/uploads/2016/02/naoi-oz-lafranceagricole.fr_.jpg (дата звернення 05.10.2024)
9. Наземний дрон XAG R150 2022 XAUV Spray Model. ГектарUA. URL:https://hectare.ua/internet-magazin/product/view/681/1382638 (дата звернення 20.10.2024)
10. ROBOTTI LR. FarmConcepts. URL: https://farmconcepts.com.au/solutions/autonomous/robotti/ (дата звернення 09.11.2024)
11. Fendt удосконалив інноваційного агроробота Xaver. TRAKTORIST.UA. URL: https://traktorist.ua/news/fendt-udoskonaliv-innovaciynogo-agrorobota-xaver (дата звернення 08.11.2024)
12. Багатофункціонального агроробота Bosch запустять у серійне виробництво. KURKUL – онлайн асистент фермера. URL: https://kurkul.com/news/11500-bagatofunktsionalnogo-agrorobota-bosch-zapustyat-u-seriyne-virobnitstvo (дата звернення 08.11.2024)
Copyright (c) 2024 Kateryna Vasylkovska, Serhii Moroz, Olha Andriienko, Mykhailo Vasylkovskyi
Agrobot for Inter-Row Cultivation of Row Crops
About the Authors
Kateryna Vasylkovska, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: vasilkovskakv@ukr.net, ORCID ID: 0000-0002-3524-4027
Serhii Moroz, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: serhii_moroz@ukr.net, ORCID ID: 0000-0001-5101-8460
Olha Andriienko, Associate Professor, PhD in Agricultural (Candidate of Agricultural Sciences), Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, e-mail: andrienko2277@gmail.com, ORCID ID: 0000-0002-0953-8347
Mykhailo Vasylkovskyi, student, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine, ORCID ID: 0000-0001-9590-742X
Abstract
Throughout the history of agriculture, farming has evolved from simple hand tools and animal-drawn machines to sophisticated automated equipment. One of the most promising technological solutions in agricultural production is the use of agricultural robots to ensure a high-quality and timely technological process. Agricultural robots are smart robots that can be controlled by various programs and software adapted to different technological operations. Bringing intelligence to agriculture, while increasing the efficiency and sustainability of agricultural production, ensures a future in which food is produced with minimal environmental damage. The purpose of this article is to analyze the existing designs of agricultural robots for inter-row tillage, weed control, and spraying in the inter-row. All of the analyzed designs of agricultural robots provide high-quality performance of one or more technological processes. However, there is one huge disadvantage: they are very expensive. In times of war, not all agricultural producers can afford such a device. The functional capabilities of agricultural robots for inter-row tillage, weed control and spraying were analyzed. Their advantages and disadvantages are analyzed. The design of an agricultural robot is proposed to ensure high-quality work in the row spacing of row crops. Also, to unify the work of the agro-robot on one body, it is possible to create designs of various variations of the agro-robot, such as a transport unit and an intelligent sprayer. The intellectualization of agriculture is moving towards enabling existing machines to work autonomously and without human intervention. The level of complexity of work that can be performed by agricultural robots is increasing. Agricultural robots, as the latest technology for agricultural production, not only save labor costs, but also improve quality control capabilities and increase the ability to withstand natural risks. Therefore, the proposed design of a simple and reliable agricultural robot to ensure high-quality work in the rows of row crops is a relevant and timely solution for agricultural production in our country.Keywords
Full Text:
PDFReferences
1. Vasylkovska, K.V. (2024). System analysis of agricultural robots in agricultural production. Ahrarni innovatsii, 24. 31-36. (DOI: https://doi.org/10.32848/agrar.innov.2024.24.4) [in Ukrainian]
2. Vasylkovska, K.V., Leshchenko, S.M., Vasylkovskyi, O.M., & Petrenko, D.I. (2016). Improvement of equipment for basic tillage and sowing as initial stage of harvest forecasting. INMATEH - Agricultural Engineering, 50(3). 13-20.
3. Bilinska, V. (2015). Modern innovative technologies in agriculture: main characteristics and prospects for implementation. Visnyk Kyivskoho natsionalnoho universytetu imeni T. Shevchenka: Ekonomika, 7 (172). 74-80. (DOI: https://dx.doi.org/10.17721/1728-2667.2015/172-7/11) [in Ukrainian]
4. Vasylkovska, K.V., Andriienko, O.O., & Shepilova, T.P. (2023). Efficiency of agrodrones in the precision farming system. Ahrarni innovatsii. 16. 13-18. DOI: https://doi.org/10.32848/agrar.innov.2023.17.2 [in Ukrainian]
5. Vasylkovska, K.V., Andriienko, O.O., & Malakhovska, V.O. (2023). Analysis of the effectiveness of agrodrones for the introduction of technological materials in the system of precision agriculture. Konstruiuvannia, vyrobnytstvo ta ekspluatatsiia silskohospodarskykh mashyn – Design, manufacture and operation of agricultural machinery, 53. 131-138. DOI: https://doi.org/10.32515/2414-3820.2023.53.131-138 [in Ukrainian]
6. Komitov, G., Mitkov, I., Harizanov, V., Neshev, N., & Yanev, M. (2020). Justification of Agrotechnical Indicators of Agrorobot. 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE). DOI: https://doi.org/10.1109/EEAE49144.2020.9279046
7. Blackmore, S., Stout, B., Wang, M. & Runov, B. (2005). Robotic agriculture – the future of agricultural mechanisation? Precision Agriculture, 5. 621–628. DOI: https://doi.org/10.3920/978-90-8686-549-9_077
8. Santos, Valle, S. & Kienzle, J. (2021). Agriculture 4.0: Robotique agricole et matériel automatisé au service d’une. https://www.naio-technologies.com/wp-content/uploads/2016/02/naoi-oz-lafranceagricole.fr_.jpg 05.10.2024
9. Nazemnyi dron XAG R150 2022 XAUV Spray Model Ground drone XAG R150 2022 XAUV Spray Model. HektarUA. https://hectare.ua/internet-magazin/product/view/681/1382638 [in Ukrainian]
10. ROBOTTI LR. FarmConcepts. https://farmconcepts.com.au/solutions/autonomous/robotti/
11. Fendt improves innovative agricultural robot Xaver. TRAKTORIST.UA. https://traktorist.ua/news/fendt-udoskonaliv-innovaciynogo-agrorobota-xaver/ 08.11.2024 [in Ukrainian]
12. Bosch multifunctional agricultural robot to be put into mass production. (2024). KURKUL: onlain asystent fermera. https://kurkul.com/news/11500-bagatofunktsionalnogo-agrorobota-bosch-zapustyat-u-seriyne-virobnitstvo 08.11.2024 [in Ukrainian]
Citations
1. Васильковська К.В. Системний аналіз агророботів в сільськогосподарському виробництві. Аграрні інновації. – Херсон: Видавничий дім «Гельветика», 2024. – Вип. 24. С. 31-36. (DOI: https://doi.org/10.32848/agrar.innov.2024.24.4)
2. Vasylkovska K.V., Leshchenko S.M., Vasylkovskyi O.M., Petrenko D.I. Improvement of equipment for basic tillage and sowing as initial stage of harvest forecasting. INMATEH - Agricultural Engineering. 2016. Vol. 50(3). P. 13-20.
3. Білінська В. Сучасні інноваційні технології в сільському господарстві: основна характеристика та перспективи впровадження. Вісник Київського національного університету імені Т. Шевченка: Економіка. 2015. Вип. 7 (172). С. 74-80. (DOI: https://dx.doi.org/10.17721/1728-2667.2015/172-7/11)
4. Васильковська К.В., Андрієнко О.О., Шепілова Т.П. Ефективність агродронів в системі точного землеробства. Аграрні інновації. – Херсон: Видавничий дім «Гельветика». 2023. Вип. 16. С. 13-18. (DOI: https://doi.org/10.32848/agrar.innov.2023.17.2)
5. Васильковська К.В., Андрієнко О.О., Малаховська В.О. Аналіз ефективності агродронів для внесення технологічних матеріалів в системі точного землеробства. Конструювання, виробництво та експлуатація сільськогосподарських машин. Загальнодержавний міжвідомчий науково-технічний збірник. – Кропивницький: ЦНТУ. Вип. 53. 2023. C. 131-138. (DOI: https://doi.org/10.32515/2414-3820.2023.53.131-138)
6. Komitov G., Mitkov I., Harizanov V., Neshev N., Yanev M. Justification of Agrotechnical Indicators of Agrorobot. 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), 2020. (DOI: https://doi.org/10.1109/EEAE49144.2020.9279046)
7. Blackmore S., Stout B., Wang M. & Runov B. Robotic agriculture – the future of agricultural mechanisation? Precision Agriculture, 5. 2000. рр. 621–628. (DOI: https://doi.org/10.3920/978-90-8686-549-9_077)
8. Santos Valle, S. et Kienzle, J. Agriculture 4.0: Robotique agricole et matériel automatisé au service d’une. 2021. URL: https://www.naio-technologies.com/wp-content/uploads/2016/02/naoi-oz-lafranceagricole.fr_.jpg (дата звернення 05.10.2024)
9. Наземний дрон XAG R150 2022 XAUV Spray Model. ГектарUA. URL:https://hectare.ua/internet-magazin/product/view/681/1382638 (дата звернення 20.10.2024)
10. ROBOTTI LR. FarmConcepts. URL: https://farmconcepts.com.au/solutions/autonomous/robotti/ (дата звернення 09.11.2024)
11. Fendt удосконалив інноваційного агроробота Xaver. TRAKTORIST.UA. URL: https://traktorist.ua/news/fendt-udoskonaliv-innovaciynogo-agrorobota-xaver (дата звернення 08.11.2024)
12. Багатофункціонального агроробота Bosch запустять у серійне виробництво. KURKUL – онлайн асистент фермера. URL: https://kurkul.com/news/11500-bagatofunktsionalnogo-agrorobota-bosch-zapustyat-u-seriyne-virobnitstvo (дата звернення 08.11.2024)