DOI: https://doi.org/10.32515/2414-3820.2022.52.156-165

Change in Surface Roughness When Applying Anti-friction Coatings

Ihor Shepelenko, Andrii Kyrychenko, Sergii Mahopets, Michael Krasota, Ivan Vasylenko

About the Authors

Ihor Shepelenko, Associate Professo, Doctor in Technics (Doctor of Technic Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, е-mail: kntucpfzk@gmail.com, ORCID ID: 0000-0003-1251-1687

Andrii Kyrychenko, Professor, Doctor in Technics (Doctor of Technic Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, е-mail: kyrychenkoam@kntu.kr.ua, ORCID ID: 0000-0002-4335-9588

Sergii Mahopets, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, е-mail: magserg@ukr.net, ORCID ID: 0000-0002-1522-4555

Michael Krasota, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: krasotamv@ukr.net, ORCID ID: 0000-0001-8791-3264

Ivan Vasylenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Central Ukraіnian National Technical University, Kropyvnytskyi, Ukraine, e-mail: vasylenko.ivan@gmail.com, ORCID ID: 0000-0001-8608-9621

Abstract

The analysis of literary sources made it possible to state that the surface roughness obtained by the finish anti-friction non-abrasive treatment (FANT) is one of the main quality criteria of the anti-friction coating and largely determines the process of running-in during the initial period of operation. The purpose of the presented research is to establish the main patterns of changes in the roughness of the surface layer treated by FANT. Application of anti-friction coatings was carried out according to the method developed by the authors using the original device on a vertical milling machine. Special disc-shaped samples made of gray cast iron SCH20 were used as the tested samples. L63 brass was used as the material of the anti-friction coating. Among the technological factors that changed with the selected FANT scheme, the following were selected: the pressure force of the anti-friction bar and the number of rubbing passes. The roughness of the surface was estimated by the average arithmetic deviation of the Rа profile. The average value obtained as a result of three measurements was taken as the value of the roughness parameter Rа. The obtained values made it possible to establish the main patterns of changes in the roughness parameter depending on the technological parameters of FANT. It is shown that with an increase in the initial surface roughness parameter Rа, the value of the change in the average arithmetic deviation of the profile Ra also increases. High initial values of the arithmetic average deviation of the Ra profile do not allow obtaining a continuous, and therefore high-quality anti-friction coating of FANT. Obtaining a high-quality anti-friction coating with the selected FANT scheme became possible with the following processing modes: pressing force of the anti-friction bar P = 164.6 N; the number of rubbing cycles is N = 6. The results of the studies performed on the application of FANT anti-friction coatings make it possible to predict and control such an important geometric parameter of the surface layer as roughness, which largely determines the quality of the treated surface.

Keywords

roughness, anti-friction coatings, finish anti-friction non-abrasive treatment, process parameters

Full Text:

PDF

References

1. Ryzhov, E.V., Klymenko, S.A. & Hutsalenko, O.H. (1994). Tekhnologicheskoe obespechenie kachestva detalej s pokrytiyami [Technological support of the quality of parts with coatings]. Kyiv, Naukova dumka [in Russian].

2. Matalin, A.A. (1981). Tekhnologicheskie metody povysheniya dolgovechnosti detalej mashin [Technological methods for increasing the durability of machine parts]. Kyiv, Tekhnіka [in Russian].

3. Lyashenko, B.A., Solovyh, E.K., Mirnenko, V.I. et al. (2010). Optimizaciya tekhnologii naneseniya pokrytij po kriteriyam prochnosti i iznosostojkosti [Optimization of coating technology according to the criteria of strength and wear resistance]. Kyiv, IPP im. G.S. Pisarenko [in Russian].

4. Chernec, M.V., Klimenko, L.P. & Pashechko, M.I. (2006). Tribomekhanika, tribotekhnika, tribotekhnologii [Mechanics of tribocontact interaction during sliding]. Nikolaev, Izdatel'stvo NGTU im. Petra Mogily [in Russian].

5. Solovyh, E.K. (2012). Tendencii razvitiya tekhnologij poverhnostnogo uprochneniya v mashinostroenii [Trends in the development of surface hardening technologies in mechanical engineering]. Kirovograd, KOD [in Russian].

6. Shepelenko, I.V. & Cherkun, V.V. (2013). Vliyanie sostoyaniya iskhodnoj poverhnosti na process FABO [Influence of the initial surface state on the FABO process]. Naukovij vіsnik Tavrіjs'kogo derzhavnogo agrotekhnologіchnogo unіversitetu – Scientific bulletin of Tavriyya State Agro-Technological University, Issue 3 (1), 150–155 [in Russian].

7. Sereda, B.P., Bannikov, L.P., Nesterenko, S.V., et al. (2019). Poverkhneve zmitsnennia materialiv pratsiuiuchykh v umovakh kompleksnoho vplyvu ahresyvnykh rechovyn [Surface strengthening of materials working under conditions of complex exposure to aggressive substances]. Kamianske, DDTU [in Ukraine].

8. Chernovol, M.I., Shepelenko, I.V. & Mohamed R.F. Budar (2016). Povyshenie kachestva finishnoj obrabotki otverstij [Better Hole Finishing]. Tekhnika v sil's'kohospodars'komu vyrobnytstvi, haluzeve mashynobuduvannia, avtomatyzatsiia: zb. nauk. pr. Kirovohrads'koho nats. tekhn. un-tu – Machinery in agricultural production, industrial engineering, automation: coll. of science avenue of Kirovohrad National Technical University, Issue 29, 104–111 [in Russian].

9. Shepelenko, I.V. (2021). Technological factors influence on the antifriction coatings quality. The international scientific journal Problems of Tribology. Vol.29. No 2/100. 50–57. [in English].

10. Shepelenko, I.V. (2020). The study of surface roughness in the process of finishing antifriction non-abrasive treatment. The international scientific journal Problems of Tribology, Vol.28, No 1/95, 34–40. [in English].

11. Shepelenko, I., Tsekhanov, Y., Storchak, M. et al. (2021). Mechanics of Micro-cutting Using FANT. Advanced Manufacturing Processes II. InterPartner 2020. Lecture Notes in Mechanical Engineering. Springer, 619–628 [in English].

12. Shepelenko, I., Nemyrovskyi, Y., Tsekhanov, Y. et al. Power Parameters of Micro-cutting During Finishing Anti-friction Non-abrasive Treatment. New Technologies, Development and Application III. NT 2020. Lecture Notes in Networks and Systems. Springer, 194–201 [in English].

13. Sherohovatost' poverhnosti [Surface roughness]. (1981). GOST 2789-73 (ST SEV 638-77). Moskva. Gosudarstvennyj komitet SSSR po standartam [in Russian].

14. Rasheed A Abdullah, Shepelenko, Ihor & Posviatyenko, Eduard (2020). Experimental quality improvement of the application of antifriction coating. Journal of Physics: Conference Series. First International Conference on Advances in Physical Sciences and Materials, Vol. 1706, 1–11 [in English].

15. Shepelenko, I., Tsekhanov, Y., Nemyrovskyi, Y. et al. (2020). Improving the Efficiency of Antifriction Coatings by Means of Finishing the Antifriction Non-abrasive Treatment. Advanced Manufacturing Processes. InterPartner 2019. Lecture Notes in Mechanical Engineering. Springer. 289–298 [in English].

16. Filonenko, S.N. (1975). Rezanie metallov [Metal cutting]. Kyiv, Naukova dumka [in Russian].

17. Shepelenko, I.V., Nemyrovskyi, Ya.B. & Posviatenko, E.K. (2022). Pidvyshchennia yakosti antyfryktsiinykh pokryttiv z vykorystanniam plastychnoho deformuvannia [Improving the quality of antifriction coatings using plastic deformation]. Mechanics and Advanced Technologies. Vol.6. No 1. 24–30 [in Ukraine].

Citations

  1. Рыжов Э.В., Клименко С.А., Гуцаленко О.Г. Технологическое обеспечение качества деталей с покрытиями. К.: Наукова думка, 1994. 181 с.
  2. Маталин А.А. Технологические методы повышения долговечности деталей машин . К.: Техника, 1981. 142 с.
  3. Оптимизация технологии нанесения покрытий по критериям прочности и износостойкости / Б.А. Ляшенко и др. Киев : НАН Украины, ИПП им. Г.С. Писаренко, 2010. 93 с.
  4. Чернец М.В., Клименко Л.П., Пашечко М.И. Трибомеханика, триботехника, триботехнологии . Т.1. Механика трибоконтактного взаимодействия при скольжении. Николаев: Изд-во НГТУ им. Петра Могилы, 2006. 476 с.
  5. Соловых Е.К. Тенденции развития технологий поверхностного упрочнения в машиностроении: монография . Кировоград, КОД, 2012. 92 с.
  6. Шепеленко И.В., Черкун В.В. Влияние состояния исходной поверхности на процесс ФАБО. Науковий вісник Таврійського державного агротехнологічного університету. 2013. Вип. 3 (1). С.150–155.
  7. Поверхневе зміцнення матеріалів працюючих в умовах комплексного впливу агресивних речовин: монографія / Б.П. Середа та ін. Кам'янське: ДДТУ, 2019. 173 с.
  8. Черновол М.И., И.В. Шепеленко, Будар Мохамед Р.Ф. Повышение качества финишной обработки отверстий . Техніка в сільськогосподарському виробництві, галузеве машинобудування, автоматизація: зб. наук. пр. Кіровоградського нац. техн. ун-ту.. 2016. Вип.29. С.104–111.
  9. Shepelenko I.V. Technological factors influence on the antifriction coatings quality// Проблеми трибології (Problems of Tribology). 2021. Т.26, №2/100. С.50–57.
  10. Shepelenko I.V. The study of surface roughness in the process of finishing antifriction non-abrasive treatment . Проблеми трибології (Problems of Tribology) . 2020. №1/95. С.34–40.
  11. Shepelenko I. Mechanics of Micro-cutting Using FANT/ I. Shepelenko, Y. Tsekhanov, M. Storchak M. et al.// In: Tonkonogyi V. et al. (eds) Advanced Manufacturing Processes II. InterPartner 2020. Lecture Notes in Mechanical Engineering. Springer, Cham (2021), pp.619–628.
  12. Shepelenko I. Power Parameters of Micro-cutting During Finishing Anti-friction Non-abrasive Treatment/ I. Shepelenko, Y. Nemyrovskyi, Y. Tsekhanov et al. New Technologies, Development and Application III. NT 2020. Lecture Notes in Networks and Systems, vol 128. Springer, Cham (2020), pp.194–201.
  13. ГОСТ 2789-73 (СТ СЭВ 638-77). Шероховатость поверхности. М.: Гос. Комитет СССР по стандартам, 1981. 7 с.
  14. Rasheed A Abdullah. Experimental quality improvement of the application of antifriction coating/ Abdullah Rasheed A, Ihor Shepelenko, Eduard Posviatyenko . Journal of Physics: Conference Series, Volume 1706, First International Conference on Advances in Physical Sciences and Materials 13-14 August 2020, Coimbatore, India, рр.1–11.
  15. Shepelenko I. Improving the Efficiency of Antifriction Coatings by Means of Finishing the Antifriction Non-abrasive Treatment/ I. Shepelenko, Y. Tsekhanov, Y. Nemyrovskyi et al. Advanced Manufacturing Processes. InterPartner 2019. Lecture Notes in Mechanical Engineering. Springer, Cham (2020), pp.289–298.
  16. Филоненко С. Н. Резание металлов . Киев: Наук. дум., 1975. 232 с.
  17. Шепеленко І.В., Немировський Я.Б., Посвятенко Е.К. Підвищення якості антифрикційних покриттів з використанням пластичного деформування . Mechanics and Advanced Technologies, 2022. Т. 6, № 1. С.24–30.
Copyright (c) 2022 Ihor Shepelenko, Andrii Kyrychenko, Sergii Mahopets, Michael Krasota, Ivan Vasylenko